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Abstract

The aim of this paper is the determination of a transient analytic model for the prediction of
energy losses of the buildings through doors with enough level of simplicity to allow a systematic
and standardised calculation for door classification.

The emphasis of the study is the ventilation effect when the door is open, also know as air
infiltration, as it is the main and paradoxically less known door characteristic in building design.

Mequonic Engineering, S.L. has carried out this project driven by The European Door and
Shutter Federation, e.V (E.D.S.F.) to allow a better understanding of the phenomena to contribute
to the development of more sustainable doors and buildings.

The model has been validated by specific experiments carried out in collaboration with Hörmann
KG.
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1 Introduction

The use of a building is responsible for the majority of its CO2 emissions over the course of its life
cycle. Energy consumption, as a principal source of such emissions, is mainly associated with the
consumption of air-conditioning and heating systems. The latter is determined by losses through the
building elevations and openings, represented in large part by doors.

The contribution from doors is usually evaluated as a part of closed fenestration systems, but their
behaviour is very different because, unlike the latter, doors are continually being opened and closed
depending on their use, and this means a much higher impact on the energy consumption of a building
that is widely recognised.

The energy losses through doors are mainly related to the air flow through the door hole when it is open.
There has been some approaches to this fact, but up to now there is not a systematic methodology to
calculate this energy flow in a practical way with enough precision to evaluate door performance.

There are quite a few algorithms which are used in computer models to describe air flow through large
internal and external openings. However, the algorithms are mainly based on simplifying assumptions
and the practical range of validity of these models is not well known. These simplifications are not
justified in a lot of possible real situations, and it would be necessary to evaluate the error assumed,
indicating which situations can be described with confidence by these models.

The key phenomena is the air flow through large external openings. Its description is basically the
same as for internal openings as long as there is no wind. Therefore, the research on large external
openings was mainly concentrated on wind effects.

Flows induced by fluctuating wind pressures and eddy circulation have been observed in single-sided
ventilation. However, it is difficult to characterise fluctuating pressures at the position of the door
when the wind characteristics are only known far from the building. An additional challenge is how
to relate these fluctuating wind pressures to the total air exchange through the single large opening,
and how to deal with cases where internal doors are open.

The ventilation through a single opening is the combined effect of wind and buoyancy, but the available
data show a large spread in values. Cross-ventilation is of considerable importance in warm climates
but very few data are available. The complexity of the problem in general can only be faced with
numerical calculation approaches.

All these wind related topics, in particular single-sided ventilation, need further measurement and
modelling efforts to provide better understanding.

The scope of our study is not to develop a model that can describe the phenomenon in all its complexity,
but to have a comprehensive simplified model allowing to understand the main factors involved and
its relative weight. In this way, we help the door industry to have a better understanding of their
products and its use in terms of energy efficiency and sustainability.

In practise, the final goal of this study is the determination of a transient analytic model to be able
to predict the energy losses through a door with enough level of simplicity to allow a systematic and
standardised calculation.

To have a better understanding of the global problem, first we will analyse the total energy exchange
in the door and then we will analyse the air flow problem in detail. After we will describe the global
calculation model and a numerical example, finally explaining the experimental tests made supporting
the air flow model.
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2 Heating and Cooling Loads Principles

There are different types of energy losses in buildings with respect a door. These are the most important
ones:

1. Heat Transmission: Heat loss due to Heat Conduction and Convection when the door is
closed.

2. Air leakage: Heat loss due to Leakages when the door is closed.

3. Air infiltration or Ventilation: Heat loss due to massive Air Flow.when the door is open.

4. Radiation: Heat generation due to natural Solar Radiation or Long Wave Radiation.

Figure 1: Heat Losses Effects Diagram

As an additional factor, it is the electrical power in automatic doors. There is a minor heat generation
and energy consumption, but as it is not related to climate and heating charges, we consider it out of
the scope of this study.

There are different door typologies depending on the application and how the door panel is moving to
open the door hole. Except on pedestrian revolving doors, which remain out of the scope of this study,
all types have a vertical plane surface when the door is closed that moves horizontally or vertically to
leave a clear door opening.

The door panel or leave moves with a certain vertical or horizontal variable speed, having a transition
situation between open and closed stages. Evaluations made in the past show that in general the
influence of this transition period is very limited supporting the simplification made that the door is
instantly open or closed. This implies the hypothesis that some effects only act when the door is open
and other when the door is closed.

Below we explain the main basic equations that govern each of the phenomena to make a first evaluation
of their importance:
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2.1 Heat Transmission

Figure 2: Heat
Transmission Losses

When a door is closed, there is a heat flow that passes through the door. This
is defined as the product of its area and the temperature difference between the
inside and outside and by what is known as the thermal transmittance of the
door or coefficient of heat transmission U .

The thermal transmittance U gives an indication of the level of thermal insula-
tion of the door when closed.

There is a significant heat transfer through transmission at these regions:

1. Heat transfer through door panel

2. Heat transfer between door and ground (below-grade walls and floor)

3. Heat transfer between door and walls (at-grade walls slabs)

2.1.1 Heat Loss through door panel

The heat transferred through walls, ceiling, roof, window glass, floors and doors is all sensible heat
transfer, referred to as transmission heat loss and computed from:

Qtrans = UA(Tin −Tout) (2.1.1)

where,

Qtrans : Instantaneous Energy Flow due to Transmission, [W ]

U : Overall thermal transmittance or U-factor,

[
W

m2K

]
A : Surface area, normal to heat flow,

[
m2
]

Tin : Inside Design Temperature, [oC or K]

Tout : Outside Design Temperature, [oC or K]

The thermal transmittance is calculated by:

1

U
=

1

αin
+

1

k
+

1

αout
(2.1.2)

where,

αin : Convection coefficient of walls inner surface,

[
W

m2K

]
αout : Convection coefficient of walls outer surface,

[
W

m2K

]
k : Thermal conductivity of the walls,

[
W

m2K

]
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2.1.2 Heat loss through below-grade walls and floors

Qtrans = UavgA(Tin −Tgr) (2.1.3)

where,

Qtrans : Instantaneous Energy Flow, [W ]

Uavg : Average U-factor for below-grade surface

[
W

m2K

]
A : Surface area, normal to heat flow,

[
m2
]

Tin : Inside Design Temperature, [oC]

Tgr : Ground Surface Temperature, [oC]

2.1.3 Heat loss from at-grade walls slabs

Qtrans = PFp(Tin −Twalls) (2.1.4)

where,

Qtrans : Instantaneous Energy Flow, [W ]

P : Perimeter (exposed edge) of floor, [m]

Fp : Heat loss coefficient meter of perimeter,

[
W

mK

]
Tin : Inside Design Temperature, [oC]

Twalls : Walls Surface Temperature, [oC]

In general, heat loss through the door panel is of a larger order of the transmission through ground
and walls, so it is usually the only term considered in simplified calculations.

2.2 Air Leakage

Figure 3: Air Leak-
age Losses

There is a heat flow associated with the exchange of air mass between the inside
and outside when the door is closed. It depends on the characteristics of the
air (specific heat, density), the temperature difference between the outside and
inside, the area of the door and what is known as air permeability.

The coefficient of air permeability L gives us an indication of the level of the
leak-tightness of the door when it is closed.

L depends on the pressure difference between the inside and outside which
results from two effects:

• Wind

• Stack effect in the interior of the building.
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The stack or chimney effect is based on the fact that there are existing air leakages in the upper
building at least of the same order of the leakages in the door.

So the Air leakage Airflow losses are then composed by:

V̇perm = V̇W + V̇S (2.2.1)

where,

V̇perm : Air leakage Airflow due to All Effects,

[
m3

s

]
V̇W : Air leakage Airflow due to external Wind Pressure,

[
m3

s

]
V̇S : Air leakage Airflow due to Stack Effect, in the building,

[
m3

s

]

2.2.1 Wind Pressure Effect

V̇W =
LW ∗A

3600
(2.2.2)

where,

V̇W : Airflow leakage losses due to external Wind Pressure,

[
m3

s

]
LW : Permeability due to Wind Pressure,

[
m3

hm2

]
A : Surface area,

[
m2
]

LW is calculated with:

LW = LR

(
PW

PR

) 2
3

(2.2.3)

where,

LW : Permeability due to Wind Pressure

[
m3

hm2

]
PW : Wind Manometric Pressure [Pa]

PR : Reference Manometric Pressure, [Pa]

LR : Reference Permeability,

[
m3

hm2

]

Reference permeability LR is obtained by tests at the reference manometric pressure, as specified in
the following standards:

- EN 12426, Industrial and Garage Doors: PR = 50 Pa
- EN 12427, Pedestrian Doors: PR = 100 Pa
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2.2.2 Stack Effect

V̇S =
LS ∗A

3600
(2.2.4)

where,

V̇S : Airflow leakage losses due to Stack Effect,

[
m3

s

]
LS : Permeability due to Stack Effect,

[
m3

hm2

]
A : Surface area,

[
m2
]

Like wind pressure effect:

LS = LR

(
PS

PR

) 2
3

(2.2.5)

where,

LS : Permeability due to Stack Effect,

[
m3

hm2

]
PS : Stack Effect Manometric Pressure, [Pa]

PR : Reference Manometric Pressure, [Pa]

LR : Reference Permeability,

[
m3

hm2

]

The PS or Stack Manometric Pressure, is the one induced by the Stack Effect, which can be computed
as:

PS = ρ

(
Tin −Tout

Tout

)
g (Hb −Hnp) (2.2.6)

where,

PS : Stack Effect Manometric Pressure [Pa]

ρ : Density of air

(
ρ ≈ 1, 293

kg

m3

)
Hb : Height of the building, of the room or highest window, [m]

Hnp : Height of the Neutral Pressure Plane, [m]

Tin : Average Inside Temperature Temperature , [K]

Tout : Exterior Temperature , [K]

g : Gravitational acceleration
(
g ≈ 9, 81

m

s2

)

Hnp an be usually calculated as half of the Height of the building:

Hnp =
Hb

2
(2.2.7)
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2.2.3 Total Heat Loss due to Air Leakage

Now, knowing the Wind flow due to Air Leakage, we can proceed to compute the Heat Loss. It will
be the sum of two components:

1. Sensible Heat Loss Flow, due to the exchange of air of different temperatures.

2. Latent Heat Loss Flow, due to the exchange of the humidity of the air.

In practice:

Qperm = QL + QS (2.2.8)

where,

Qperm : Air Leakage Heat Loss, [W ]

QL : Latent Heat Loss, [W ]

QS : Sensible Heat Loss, [W ]

2.2.4 Sensible Heating Loss

QS = cpair
ρV̇perm(Tin −Tout) (2.2.9)

where,

QS : Sensible Heating Loss, [W ]

cpair : Specific Heat of dry air,

(
cpair ≈ 1, 0049

kJ

kgK

)
ρ : Density of air

(
ρ ≈ 1.293

kg

m3

)
V̇perm : Airflow,

(
m3

h

)
Tin : Indoor air temperature, [oC])

Tout : Outdoor air temperature, [oC])

2.2.5 Latent Heating Loss

QL = LH2O
V ρV̇perm · (χin − χout) (2.2.10)

where,
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QL : Latent Heating Loss, [W ]

LH2O
v : Latent Heat of Evaporation at indoor air temperature

(
LH2O
v ≈ 2257

kJ

kg

)
ρ : Density of air

(
ρ ≈ 1.293

kg

m3

)
V̇perm : Airflow,

(
m3

h

)
χin : Humidity ratio of indoor air,

[
kg water

kg dry air

]
χin : Humidity ratio of indoor air,

[
kg water

kg dry air

]

2.3 Air Infiltration

Figure 4: Heat Air Infil-
tration Losses

When the door is open, there is an exchange of air mass of a far greater
order than arises due to permeability, although from the physical point of
view this is a similar phenomenon.

For a certain door area, the total amount of energy loss will be determined
by how long the door is open. For a given number of cycles it is the speed
of the door which determines the total amount of heat loss due to this
effect.

During the time that the door is open, the thermal transmittance and air
permeability cease to be relevant, as the door panel is removed from the
door hole.

As seen with air leakage, air flow exist due to the pressure difference be-
tween inside and outside the building, mainly by two effects:

• Wind pressure

• Bulk density flow

When we have a large opening between fluids at different temperature, even in absence of wind, there
is a so-called gravitational air flow or bulk density flow due to the density differences.

When the door is open, the stack effect is not considered with the hypothesis that there are not such
large openings at the top of the building.
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2.3.1 Wind Pressure Effect

The infiltration air quantity due to the wind pressure effect estimation is computed as:

V̇W = Cd ·A · vw = Cd ·A ·

√
2∆P

ρ
(2.3.1)

where,

V̇W : Wind Pressure Air flow ,

[
m3

s

]
A : Area

[
m2
]

Cd : Discharge Coefficient, usually between 0.5− 1.0 [Adimensional]

vw : Wind Velocity ,
[m
s

]
∆P : Pressure Diference , [Pa]

ρ : Density of air,

[
kg

m3

]

And Cd can be calculated as:

Cd =
1√

1.75 + 0.7 · exp
(
− W

32.5·H
) (2.3.2)

where,

Cd : Discharge Coefficient

W : Length of the Aperture , [m]

H : Height of the Aperture , [m]

2.3.2 Bulk Density Flow

Also know as gravitational flow or buoyancy, this is a more complex phenomena and the equations of
this effect will be thoroughly developed in chapter 3.1.

The air velocity distribution is not uniform through the hole section, but we can speak about a net air
volume exchange of V̇G.

Taking into account these three effects, the total Air flow entering trough the open door is:

V̇infil = V̇G + V̇W (2.3.3)
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where,

V̇infil : Infiltration Air Flow,

[
m3

s

]
V̇G : Air Flow due to the Gravitational Effect,

[
m3

s

]
V̇W : Air flow due to the Wind Pressure Effect,

[
m3

s

]

2.3.3 Total Heat Loss due to Infiltration

In an analogue way to the air leakage losses, total heat due to both temperature and moisture can be
expressed as:

Qinfil = QL + QS = V̇infil · ρ · (hin − hout) (2.3.4)

where,

Qinfil : Infiltration Heat Loss, (W )

QL : Latent Heat Loss, (W )

QS : Sensible Heat Loss, (W )

V̇infil : Airflow,

(
m3

h

)
ρ : Density of air

(
ρ ≈ 1.293

kg

m3

)
h : Interior Enthalpy,

(
J

kg

)
ho : Exterior Enthalpy,

(
J

kg

)

Sensible heating and latent heating are also calculated with similar expressions:

2.3.4 Sensible Heating Loss

QS = cpair
ρV̇infil · (Tin −Tout) (2.3.5)

where,
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QS : Sensible Heating Loss, [W ]

cpair : Specific Heat of dry air,

(
cpair ≈ 1, 0049

kJ

kgK

)
ρ : Density of air

(
ρ ≈ 1.293

kg

m3

)
V̇infil : Airflow,

(
m3

h

)
Tin : Indoor air temperature, [oC])

Tout : Outdoor air temperature, [oC])

2.3.5 Latent Heating Loss

QL = LH2O
V ρV̇infil · (χin − χout) (2.3.6)

where,

QL : Latent Heating Loss, [W ]

LH2O
v : Latent Heat of Evaporation at indoor air temperature

(
LH2O
v ≈ 2257

kJ

kg

)
ρ : Density of air

(
ρ ≈ 1.293

kg

m3

)
V̇infil : Airflow,

(
m3

h

)
χin : Humidity ratio of indoor air,

[
kg water

kg dry air

]
χin : Humidity ratio of indoor air,

[
kg water

kg dry air

]

We also can calculate both heat losses due to infiltration and air leakage adding wind flows due to
both effects and computing this addition as the total Heat Loss due to Wind Flow.
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2.4 Solar Radiation

Figure 5: Heat Solar Ra-
diation Losses and Gener-
ation

When the leaves or panels of the doors are made wholly or partly of glass
or other transparent materials, solar radiation directly contributes to the
heat inside the building. This is an effect which is generally favourable in
winter and unfavourable in summer depending on the latitude.

The value of the flow of heat by radiation depends on the geographic lat-
itude, the orientation of the elevation, the presence of shadows due to
neighbouring buildings, the existence of parasols or solar protection ele-
ments, etc.

Since access doors are at levels close to ground, the influence of the so-
lar factor is lower than for windows, and in general is of a lower order
than other factors, even more so when looking at the effect over the whole
year. For this reason, usually the solar factor is not considered in energy
classifications of doors.

To be able to quantify the effect, we make an approximation to the basic
equations that govern the phenomena:

Qsolar = I · SHGC ·Apf (2.4.1)

where,

Qsolar : Instantaneous Radiation Energy Flow, [W ]

I : Solar irradiance

[
W

m2

]
SHGC : Solar Heat Gain Factor, [adimensional]

Apf : Total projected area of fenestration,
[
m2
]

SHGC is the fraction of incident solar radiation admitted through the door, both directly transmitted
and absorbed and subsequently released inward, and it can be between 0 and 1. It takes into account
the glazing systems properties of reflection, transmission and absorption, as well as shading conditions.
It is also known as Solar Factor.

The solar irradiance, which is the radiation power received by a surface, depends on factors like the
latitude and the orientation of the door, and it has diffuse and direct radiation components.

The projected area will be:

Aef = Aglaze cosφ (2.4.2)

Where Aglaze is the area of the transparent section of the door and φ is the incident angle respect the
normal of the Area.
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2.5 Long Wave Radiation

Figure 6: Long Wave Ra-
diation Losses

Long wave radiation is the thermal electromagnetic radiation within or
surrounding a body in thermodynamic equilibrium with its environment,
or emitted by a black body (an opaque and non-reflective body). It has a
specific spectrum and intensity that depends only on the temperature of
the body, which is assumed for the sake of calculations and theory to be
uniform and constant.

The thermal radiation spontaneously emitted by objects in the form of
infrared light can be approximated as black-body radiation.

The net power radiated by doors or walls is the difference between the
power emitted and the power absorbed:

Pnet = Pemit −Pabsorb (2.5.1)

Qlongwave = Aσε
(
T4

s −T4
amb

)
(2.5.2)

where,

A : Area of the body surface (door),
[
m2
]

σ : Constant of Stefan-Boltzmann,

(
σ ≈ 5, 670 ∗ 10−8 W

m2K4

)
Ts : Temperature of the body (door) surface, [K]

ε : Emissivity (≈ 0, 8− 0, 95) , [adimensional]

Tamb : Ambient temperature, [K]

This means that there is an energy flow between the external surface of the door and the ambient
outside the building (Tamb = Tout), and between the internal surface and the ambient inside the
building (Tamb = Tin).

The amount of this effect is related to the surface temperature, which is also related to the U-value,
so it is usual that it is not taken into account for product specification. But, as we will see, it is not
negligible in terms of energy losses as it is confirmed by technical literature.

2.6 Preliminary evaluation of the different effects

To have a preliminary idea of the order of magnitude of the different effects, we make a simple evaluation
just applying the basic equations (stationary approach) with rough parameter estimations. We consider
the following effects:

- Heat transmission, air leakage, solar radiation and long wave radiation when the door is closed.
- Air infiltration and solar radiation when the door is open.
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We will calculate the amount of energy due to the different effects in kWh for 1 year.

As a simplification, we do not consider at this introductory stage the bulk density flow.

We calculate a typical case giving usual values for the parameters that are summarised in Table 1.

Parameters Symbol Unit V alue

Outside Temperature Tout [oC] 10
Inside Temperature Tin [oC] 20
Wind Pressure Pw [Pa] 12
Door Width DW [m] 3
Door Height DH [m] 3
Building Height Hbuilding [m] 5
Buiding Area Abuilding [m2] 1000

Thermal Transmittance U [W/m2K] 2, 5

Air Permeability L [m3/m2h] 6
Reference Pressure PR [Pa] 50
Inside Specific Humidity χin [kg/kg] 0, 0075
Outside Specific Humidity χout [kg/kg] 0, 0025

Solar Heat Gain Factor (door closed) SHGC [adimensional] 0, 4
Solar Heat Gain Factor (door open) SHGC [adimensional] 0, 6
Irradiance I [W/M2] 100
Incident Angle φ [o] 30
Door Glazing Area Aglaze [m2] 3

External Door Surface Temperature Tdoorout [oC] 12
Internal Door Surface Temperature Tdoorin [oC] 15
Emissivity ε [adimensional] 0, 9

Table 1: Typical case parameters for preliminary evaluation.

The values for the constants are taken as described before in this chapter. With these parameter
values, applying all the equations above, we have the results we show in Table 2.

Energy losses effect Flow [W ] Energy per year [kWh]

Transmission 225, 0 178, 4
Air Leakage 219, 4 173, 9
Solar Radiation (door closed) 93, 5 74, 1
Long Wave Radiation 309, 4 245, 2

Air Infiltration 207667, 1 17305, 7
Solar Radiation (door open) 163, 7 13, 6

Table 2: Typical case energy results.

We see that infiltration losses are two orders of magnitude over the rest of factors. This balance is
strongly dependant on the number of opening cycles and opening time.

If we consider only door closed situation, we see that the order of the rest of the factors is quite similar,
including the long wave radiation.
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Energy losses effect Sensible Heat [kWh] Latent Heat [kWh]

Air leakage 160, 7 0, 2
Infiltration 16825, 6 18, 9

Table 3: Sensible and latent heat comparison.

We also see that latent heat in air leakage has a very limited weight and it be neglected in general.
Latent heat in air infiltration has a more significant influence, but its relative weight in the total
infiltration losses is quite low, so we will also leave it out of the scope of the simplified model. Only
for large humidity differences should be taken into account in accurate calculations.

Regarding solar effect, it can be more influential in pedestrian full glass doors than in industrial doors,
but it will be usually be smaller than other factors. For this reason we will leave it out of the scope
of the simplified model, but having in mind that it should be included if a more precise calculation is
required in certain situations.
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3 Physical and Mathematical Model

Once that we have the complete basic equations of the different convergent phenomena related to the
energy losses of our building through a door, we will develop a transient analytic ”simplified” model
to be able to predict the energy losses, which is the main objective of this study.

Although the previous simple equations are valid as they are for some phenomena (transmission, air
leakage), for the air infiltration a deeper approach has to be done to have a more precise model,
specially for the bulk density flow.

3.1 Bulk Density Flow

As we will confirm by specific experiments, there is a large heat exchange through a door open even
in absence of wind if there is a temperature difference between inside and outside the building. There
has been some approximations to this phenomena like [1] and [2], but its importance to the door field
deserves a specific approach.

The classical simplified approach of the so-called gravitational flow is the application of the continuity
equation and Bernoulli theorem on both sides of the large opening. This is equivalent to assume the
inter-zone air flow to be a steady flow (no variation with time) of an in-compressible, non-viscous fluid
of constant density, that is only driven by pressure gradients on both sides of the opening.

We will make an integration of the infiltration flux, partially based in [2], where some details now
shown can be followed.

3.1.1 Mass Flow between Stratified Zones

In the following, an expression for the mass flow through a large opening separating two zones of
different temperature and pressure will be derived.

The general case is considered. There is a static pressure difference at reference level z0 between zones
1 and 2, and different vertical temperature profiles occur in the two zones. These temperature profiles
are assumed linear, though the temperature gradients can be different. The situation is depicted in
Figure 7, where some parameters are described.
First we assume that the conditions are such that the neutral level, i.e. the level at which the pressure
is equal in zones 1 and 2, is located in the opening, so that bidirectional air flow occurs.

The stack pressure difference between a point at height z and a point at reference height z0 is calculated
with:

∆P (z)−∆P (z0) =

∫ z

z0

g [ρ2(ξ)− ρ1(ξ)] dξ [Pa] (3.1.1)

Although density variations due to pressure variations are negligibly small, those resulting from tem-
perature differences should be taken into account, especially when temperature gradients are large.
The air density in zone i is inversely proportional to the temperature, namely:

ρi =
PrefM

RTi

[
kg/m3

]
(3.1.2)

where Pref is a reference pressure, e.g. the atmospheric pressure, M is the molecular weight of air,
and R is the universal gas constant. For a very good approximation we may write:

ρi =
K

Ti

[
kg/m3

]
(3.1.3)
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where K is a constant. The expression for ∆P (z) now becomes:

∆P (z)−∆P (z0) =

∫ z

z0

gK

[
1

T2(ξ)
− 1

T1(ξ)

]
dξ [Pa] (3.1.4)

Figure 7: Flow profile and parameter definition

Assuming a linear temperature profile Ti(z) = ai + bi · z we obtain:

∆P (z)−∆P (z0) =

∫ z

z0

gK

[
1

a2 + b2 · ξ
− 1

a1 + b1 · ξ

]
dξ [Pa] (3.1.5)

∆P (z)−∆P (z0) = gK

[
1

b2
ln

(
T2(z)

T2(z0)

)
− 1

b1
ln

(
T1(z)

T1(z0)

)]
[Pa] (3.1.6)

If the temperature gradient in both zones is not too large, we have to a very good approximation:

ln

(
Ti(z)

Ti(z0)

)
≈ Ti(z)− Ti(z0)

Ti(z0)
(3.1.7)

The first order approximation is highly accurate. Inserting the linear temperature profile:

ln

(
Ti(z)

Ti(z0)

)
≈ bi

z − z0

Ti(z0)
(3.1.8)

So in first order approximation:

∆P (z)−∆P (z0) ≈ gK
[

1

T2(z0)
− 1

T1(z0)

]
(z − z0) (Pa) (3.1.9)

20



This means that ∆P (z) changes linearly with the height coordinate z when temperatures in both zones
differ at the reference height z0. Note that the first order approximation it results in a equation which
is independent of the temperature gradients in both zones, b1 and b2.

If the opening through which the air flows extends from zb to zb +H, the pressure difference between
the two zones at bottom level zb will be equal to:

∆P (zb) = ∆P (z0) + gK

[
1

T2(z0)
− 1

T1(z0)

]
(zb − z0) [Pa] (3.1.10)

and at the top of the opening:

∆P (zb +H) = ∆P (z0) + gK

[
1

T2(z0)
− 1

T1(z0)

]
(zb +H − z0) [Pa] (3.1.11)

Now, if either ∆P (zb) > 0 and P (zb + h) < 0 or ∆P (zb) < 0 and ∆P (zb + H) > 0 then the neutral
level zn is located inside the opening and bidirectional airflow occurs. If P (zb) and ∆P (zb +H) have
the same sign, or if one of them is zero, only unidirectional flow takes place.

According to Bernoulli’s Law, a pressure difference ∆P (z) results in a local air velocity u(z) propor-
tional to the square root of ∆P (z). Therefore, an infinitesimal volume flow dq̇. through an element of
height dz in the opening can be written as:

dq̇ = Wu(z)dz [m3/s] (3.1.12)

Where W is the opening (door) width.

In Annex 6.1 we develop a complementary approach based on the deduction of u(z) instead of ∆P (z)
where the velocity profile seen in Figure 7 is analytically described.

If we consider the case where T2 > T1 and where the pressures at reference level z0 in both zones are
such that the neutral level is located inside the opening (so bidirectional airflow will occur), then the
mass flow from 2 to 1 is equal to:

ṁ21 =

∫ zb+h

zn

ρ2dq̇ = CdW
√

2ρ2

∫ zb+h

zn

∆P (z)1/2dz [kg/s] (3.1.13)

and the mass flow from 1 to 2 is equal to:

ṁ12 =

∫ zn

zb

ρ1dq̇ = CdW
√

2ρ1

∫ zn

zb

∆P (z)1/2dz [kg/s] (3.1.14)

where Cd is an empirical constant (discharge coefficient) that can be approximated with the expression
(2.3.2).

In these expressions, the error made by placing
√

2ρi in front of the integral sign is negligible be-
cause density variations are very small over the integration interval when compared to variations in
∆P (z). Inserting the linear expression for ∆P (z) into the integrals gives for ṁ21 and ṁ12 the following
expressions:

ṁ21 =
2

3
CdW

√
2ρ2H

C
3/2
a

Ct
[kg/s] (3.1.15)

ṁ12 =
2

3
CdW

√
2ρ1H

−C3/2
b

Ct
[kg/s] (3.1.16)
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where:

Ct = hgK

(
1

T2(z0)
− 1

T1(z0)

)
= Ca − Cb

Ca = ∆P (zb + h)

Cb = ∆P (zb)

Note that in the situation in Figure 7, the pressure difference at the top level of the opening, Ca =

∆P (zb+h) is negative, so that C
3/2
a is an imaginary number. To keep the value of ṁ21 real, Ca should

be taken in absolute value. It is convenient, however, to write the net mass flow of air through the
opening as a complex quantity, i.e.:

ṁ = ṁ21 + ṁ12 =
2
√

2

3
CdW

1

Ct

(√
ρ2C

3/2
a −√ρ1C

3/2
b

)
[kg/s] (3.1.17)

This expression was first derived by Cockroft (1979). The net mass flow is a complex number, of which
the real part is the flow from 1 to 2 and the imaginary part is the flow from 2 to 1.

It must be emphasized that the Cockroft formula for ṁnet in the form given above only holds for the
special case depicted in Figure 7. There are two reasons why it is necessary to modify the expression.

First, if zone 1 on the left having warmer zone instead of the cooler one, ṁ12 would take place above the
neutral level, and ṁ21 below it. The integration interval for both contributions would be interchanged,
so that in Cockroft’s expression, the term containing Ca is now ṁ12 and the term containing Cb is
now ṁ21. The formula now reads:

ṁnet = ṁ21 + ṁ12 =
2
√

2

3
CdW

1

Ct

(√
ρ1C

3/2
a −√ρ2C

3/2
b

)
[kg/s] (3.1.18)

However, the real part still gives the flow from 1 to 2 and the imaginary part still gives the flow from
2 to 1.

Second, if the external pressures in both zones differ considerably, the neutral level will shift to a
height below or above (i.e. outside) the opening, so that the airflow becomes unidirectional. In this
situation, one of the flow terms results from an integration over the entire opening, from zb to zb +H,
while the other term is cancelled. In the situation of unidirectional flow, the pressure differences at
the bottom and top of the opening, Cb and Ca, have the same sign (unless one of them vanishes), so

that C
3/2
a − C3/2

b is either a real or a pure imaginary number.

By carefully comparing the expressions for ṁnet which can be established for the different cases of
unidirectional and bidirectional flow, that is by ”tuning” the temperature difference and the pressure
difference between zone 1 (left) and zone 2 (right), the following very convenient formula for ṁnet

which holds in all cases can be obtained:

ṁnet = ṁ12 + ṁ21 (3.1.19)

Where:
ṁ12 =

√
ρ1Re (Za − Zb) ≥ 0 ([kg/s]

ṁ21 = −√ρ2Im (Za − Zb) ≤ 0 [kg/s]

Za =
2
√

2

3
CdHW

C
3/2
a

Ct
[m2Pa1/2]
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Zb =
2
√

2

3
CdHW

C
3/2
b

Ct
[m2Pa1/2]

As the direction 1 → 2 is, by definition, the positive direction, the contribution ṁ21 should be non
positive, which explains the minus sign appearing in the expression. The artificial complex quantities
Za and Zb are introduced for convenience and have no physical meaning. In the complex plane, (Za
- Zb) is located either on the positive real axis (when there is a unidirectional flow 1 → 2 ), on the
positive imaginary axis (when there is a unidirectional flow 2 → 1), or in the first quadrant of the
complex plane (when the flow is bidirectional). When for a given temperature difference between
zone 1 and 2 the external pressure difference ∆P (z0) is continuously increased from highly negative to
highly positive, (Za Zb) describes a smooth continuous curve.

3.1.2 Heat Flow between Stratified Zones

Just as for the mass flow, a convenient expression for the bidirectional heat flow through a large
opening between stratified zones can be derived, giving Φ12 and Φ21 as real and imaginary parts of
complex quantities.

Whereas mass flows are calculated by evaluating integrals of the type:∫
ρi(z)dq̇ (kg/s) (3.1.20)

heat flows are calculated by evaluating integrals of the type:∫
CpTi(z)ρi(z)dq̇ = CpCdW

∫ √
2ρi(z)Ti(z)

√
∆P (z)dz (kg/s) (3.1.21)

in an analogous way.

To be able to evaluate these integrals analytically for linear temperature profiles Ti(z) = Ti(z0)+bi(z−
z0), the integrand

√
2ρi(z)Ti(z)

√
∆P (z) above, should be of the form [polynomial] ·

√
∆P (z) which

means that
√

2ρi(z)Ti(z) should be approximated by its ”best linear fit”, which is (as can be checked

easily):
√

2ρi(z0) ·
[
Ti(z0) + 1

2bi (z − z0)
]
.

The evaluation of the integrals is a rather laborious task, which will not be documented here (the full
derivation can be provided to interested readers). However, when these integrals are worked out in
the same way as was done for the mass flows, we obtain convenient expressions for the heat flows Φ12

and Φ21.

The contribution of the outside air velocity must be also taken into account. According to the results
found in [1], there is an experimental correction of the wind pressure due to turbulence effects in large
openings and this pressure can be expressed as:

Pwind =
1

2
ρ · 0.0029 · v2

wind (3.1.22)

Finally the integrated Energy flux results as:

Φtot = Φ12 + Φ21 (3.1.23)

Where:

Φ12 = Cp
√
ρ1(z0)Re

(
T̃1a(z0)Za − T̃1b(z0)Zb

)
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Φ21 = Cp
√
ρ2(z0)Im

(
T̃2a(z0)Za − T̃2b(z0)Zb

)
T̃ia(z0) = Ti(z0)− biH

[
Ca
5Ct

+
α− 1

2

]
T̃ib(z0) = Ti(z0)− biH

[
Ca
5Ct

+
α

2

]
α =

z0 − zb
H

Za =
2
√

2

3
CdW

C
3/2
a

Ct

Zb =
2
√

2

3
CdW

C
3/2
b

Ct

Ca = ∆P (zb +H) = ∆P (z0) + gKair

(
1

T2(z0)
− 1

T1(z0)

)
(zb + h− z0)

Cb = ∆P (zb) = ∆P (z0) + gKair

(
1

T2(z0)
− 1

T1(z0)

)
(zb − z0)

Ct = Ca − Cb
The discharge coefficient as seen:

Cd =
1√

1, 75 + 0, 7 · e(− W
32.5·H )

And the linear variation of temperature and pressure can be expressed:

Ti(z) = ai + bi · z

Pi(z) = ci + di · z +
1

2
ρ · 0.0029 · v2

wind

And the density:

ρi =
Kair

Ti(z)

Kair =
101325

R

R = 287.05
J

kgK

In practice, ai and bi are empirical and define the linear variation off the temperature across the opening
height on both sides, as well as ci and di have the same function for the pressure linear variation.

Typical values of these parameters are the following, confirmed from the results described in chapter
4.5:

c1 = c2 ≈ 101325 Pa (atmospheric pressure)

d2 ≈ 12÷ 30 Pa/m

In chapter 4.5 we also found that we can approximate:

d1 = d2 +
0, 0125

z3
0

(3.1.24)
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We also confirmed:
bi ≈ 0, 1÷ 4 K/m

And ai can be calculated from with the linear expression of Ti(z):

ai = Ti(z0)− biz0 (3.1.25)

The heat flow Φtot obtained in this way is a function of Tin and Tout. In order to simplify the problem
by linearizing the equations, we can assumed that:

Φtot = Kinfil · (Tin − Tout) (3.1.26)

Then we can extract the constant Kloss by infiltration to include in the overall model, which is our
objective:

Kinfil =
Φtot

Tin − Tout
(3.1.27)

3.1.3 Door Height Correction due to Boundary Effects

In the previous model, no boundary layer effect was considered, and this means that the maximum
velocity value is found on door bottom z = 0. Also, it increases indefinitely with the door height H,
increasing the energy flux Φtot in the same way. This takes to increasing errors with increasing door
height.

We know that the velocity profile according to known wind profile power law can be taken as follows:

Figure 8: Wind boundary profile

u(z) = ur

(
z

zr

)1/7

(3.1.28)
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Where ur is the wind velocity at the reference height zr. With this more realistic air flow profile we
have u = 0 at the bottom (z = 0, where a boundary condition exits) and increases until it reaches
z = zr, where the wind velocity is u = ur. In the following figure we show the ideal and corrected
profile with the described law:

Figure 9: Theoretical wind velocity profiles

The integration of the flow equation including the effect is quite complex, so a different approach was
made to have an analytic calculation useful for our objectives. We consider an exponential correction
function δ(H) adjusted with our experimental results:

δ(H) =
7

8
e−0.3073·H (3.1.29)

This factor is included multiplying the flux, decreasing its value depending on door height.

3.2 Energy Losses Model

As a first step to define the simplified model, we will analyse the thermodynamics equations that
govern the global problem.

3.2.1 Temperature Profile and Differential Equation

As we know, if the door is open, we will have a heat loss flux due to a wind infiltration effect. If
the door is closed we will have a conduction and air permeability heat loss effect. So let us assume a
general heat loss flux (independent if the door is open or closed), and an incoming heat flux due to
the Heating. Therefore if we assume that Kloss is constant and doesn’t depend on the Temperature
at all, we can arrive at the following Differential Equation:

−dEloss + dEheat = dEin (3.2.1)
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−Q̇lossdt+ Q̇heatdt = dEin (3.2.2)

where Q̇loss is the Energy Flux going inside/outside the building (crossing door):

Q̇loss = Kloss (Tin(t)− Tout) (3.2.3)

Q̇heat is the Energy Flux of Heating system and Ein is the Internal Energy:

Ein = CpρVolTin(t) (3.2.4)

If we develop Equation 3.2.2 and integrate at both sides of the equation, we can arrive to the following:

−
∫ t

0

Kloss

CpρVol
dt′ =

∫ Tin(t)

Tini

1

Tin − Tout − Q̇heat

Kloss

dT ′ (3.2.5)

Tin(t) = Tout +
Q̇heat

Kloss
−

[
Tout +

Q̇heat

Kloss
− Tini

]
e
− Kloss
CvρVol

t
(3.2.6)

Rearranging this equation, we arrive to:

Tin(t) = Teq − [Teq − Tini] e
− KLoss
CpρVol

t
(3.2.7)

where,

Teq = Tout +
Q̇heat

Kloss

We can see that the behaviour of the Equation (3.2.7) is very intuitive, and in fact it is a well known
problem (Newton Cooling Law). As we can see, when the time is t = 0, we start at Tini, and after a
very long time, when t→∞ the Temperature is Teq. We also see that the larger Kloss is (larger heat
flux loss), the faster it will arrive at Teq, and the larger the Volume Vol is, the slower it will arrive at
Teq.

The next step will be to include in the above equations the effects described in chapter 2.

3.2.2 Long Wave Radiation Effect

According to (2.5) one approach to include this effect in the comprehensive model could be to include
it in the QHeat expression as a constant heat flux. But it cannot be calculated directly, as Q̇long wave

depends on the inside Temperature Tin(t), the Temperature of the door inner surface Tdoor in(t), the
Temperature of the door outer surface Tdoor out(t) and the outside Temperature Tout(t):

Q̇long wave = −σεA(T 4
in − T 4

door in)− σεA(T 4
door out − T 4

out) (3.2.8)

Q̇long wave = −σεA(T 4
in − T 4

door in + T 4
door out − T 4

out) (3.2.9)

The calculation of of Tdoor in and Tdoor out is dependant both on the heat transmission and the long
wave effect, and it takes to a non linear complex calculation.
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As a first simplification we only consider the effect of heat transmission. According to (2.1.2) we know
that the overall heat transfer transmission coefficient U is:

U =
1

1
αin

+ 1
k + 1

αout

(3.2.10)

The convection coefficients are calculated in well known iterative calculations based on experimental
coefficients taking into account a lot of parameters. As a first approach, for this kind of natural
convection on doors the values are in the following orders:
where normally,

αin ≈ 7.7 − 9

[
W

m2K

]
αout ≈ 14.3 − 16.7

[
W

m2

]

With this values we can compute the value of k, as the value of U is given by the door manufacturer.
Then it would be:

k =

(
1

U
− 1

αin
− 1

αout

)−1

(3.2.11)

Knowing the parameters αin, αout and K, we can find the surface Temperatures at the door, with the
following expressions:

αin (Tin − Tdoor in) = k (Tdoor in − Tdoor out) (3.2.12)

k (Tdoor in − Tdoor out) = αout (Tdoor out − Tout) (3.2.13)

Then, resolving the system, we have Tdoor in, and Tdoor out:

Tdoor in =
αinαoutTin + αinkTin + αoutkTout

αinαout + αink + αoutk
= (A+ C) · Tin +B · Tout (3.2.14)

Tdoor out =
αinαoutTout + αinkTin + αoutkTout

αinαout + αink + αoutk
= A · Tin + (B + C) · Tout (3.2.15)

where,

A =
αinαout

αinαout + αink + αoutk

B =
αink

αinαout + αink + αoutk

C =
αoutk

αinαout + αink + αoutk

(3.2.16)

As a result of the previous developments, we will have the following:

Q̇long wave = −σεA
(
T 4

in − ((A+ C) · Tin +B · Tout)
4 + (A · Tin + (B + C) · Tout)

4 − T 4
out

)
(3.2.17)
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We can try to simplify this expression with a linear function dependant on ∆T :

Q̇long wave = −σεA · Teq(∆T ) (3.2.18)

As (∆T = Tin − Tout) is quite small in a range of (∆T = 0 − 40 oC), the equation can be linearized
without any concern. This linearization would be,

Teq(∆T ) = 4
(αin + αout)UT

3
out

αinαout
·∆T + 6

(
U
(
α2
in − α2

out

)
+ 2αinα

2
out

)
UT 2

out

α2
inα

2
out

· (∆T )2

+4

(
U2
(
α3
in − α3

out

)
− 3Uαinα

3
out + 3α2

inα
3
out

)
UTout

α3
inα

3
out

· (∆T )3

+

(
U3
(
α4
in − α4

out

)
+ 4U2αinα

4
out − 6Uα2

inα
4
out + 4α3

inα
4
out

)
U

α4
inα

4
out

· (∆T )4

(3.2.19)

This expression remains too complex for our simplified calculation purposes. Knowing that ∆T <<
Tout, as a rough approximation we can consider only the first term of the equation:

Teq(∆T ) ≈ 4
(αin + αout)UT

3
out

αinαout
·∆T (3.2.20)

If we express the equation the terms of conductivity k:

Teq(∆T ) ≈ 4
(αout + αin)k T 3

out

αin (k + αout) + kαout
·∆T (3.2.21)

We can take into account this effect in our general model as it depends only on ∆T , so we can add an
additional factor to Kloss. Therefore Klong wave would be,

Klong wave ≈ 4σεA
(αin + αout)UT

3
out

αinαout
(3.2.22)

If we introduce typical mean values of αin ≈ 8.4
[
W
m2K

]
and αout ≈ 15.5

[
W
m2K

]
, we finally have:

Klong wave ≈ 0, 734 · σ · ε ·A · U · T 3
out = 4, 163 · 10−8 · ε ·A · U · T 3

out (3.2.23)

If we calculate with usual Tout values, we verify that these losses have the same order than the
transmission losses, so we confirm that it is an effect that should be taken into account with door
closed, also considering that the simplifications made are in the energy gain side.

To have a better approximation of the surface temperatures for a more accurate result, it is possible
to sum Klong wave to the conductivity k in (3.2.13) and make an iterative calculation.

3.2.3 Heat Transfer Coefficient

Let us note that Equation (3.2.7) is a general equation which can be particularised at any time just
changing the limits or the effect.

As it is explained in section 2, it is also important to remember that this model assumes the approx-
imation that the door is fully open from the instant that the door panel starts to move, so we can
separate the effects between open and closed stages.
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If the door is open, Kloss will be only determined by the Heat Flux due to Infiltration, so:

Kdoor open
loss = Kinfil =

Φtot
Tin − Tout

[
W

K

]
(3.2.24)

If the door is closed instead, Kloss will be the Heat Flux due to Air Permeability, Heat Trans-
mission and Long Wave Radiation,

Kdoor closed
loss = Ktrans +Kperm +Klong wave (3.2.25)

As seen, the Transmission coefficient will be:

Ktrans = A · U (3.2.26)

U =

(
1

αin
+

1

αout
+

1

K

)−1

(3.2.27)

And the Air Leakage coefficient, combining the Wind effect and the Stack effect as seen in chapter 2:

Kperm = Cpρ · V̇perm

[
W

K

]
(3.2.28)

V̇perm =
A · LR
3600

(
Pw + Ps
Pr

)2/3

(3.2.29)

Pw =
1

2
ρ · 0.0029 · v2

wind · (3.2.30)

Ps =
ρg (Hb −Hnp) (Tin − Tout)

Tout
(3.2.31)

where, Pw is the Pressure induced by the Wind, and Ps is the Pressure induced by the Stack effect.

Substituting:

Kdoor closed
loss = A · U + Cpρ

A · LR
3600

(
Pw + Ps
PR

)2/3

+ 4σA
(αin + αout)UT

3
out

αinαout

[
W

K

]
(3.2.32)
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3.2.4 Heat Flux

Next to the heating, we should add the flux due to Solar Radiation effect to the total heat flux.
We would have then:

Q̇heat = Q̇heating + Q̇solar (3.2.33)

where,

Q̇heating = CheatVol (3.2.34)

In the summer, if there is a cooling system, then we will have an equivalent equation for the cooling
input.

The heat flux due to solar effect would be as seen before:

Q̇solar = I · SHGC ·Aef

The value of SGHC changes in case that the door is open, as the transmission factor of the glass
disappears and the glazing area equals the door Area. Then we will have two expressions:

Q̇door closed
solar = SHFDdoor ·Aef (3.2.35)

Adoor closed
ef = Aglaze cosφ (3.2.36)

Q̇door open
solar = SHFDhole ·Aef (3.2.37)

Adoor open
ef = Adoor cosφ (3.2.38)

As a result of the considerations made in chapter 2.4, we leave it out of the simplified model object of
this study, knowing that is contribution its not negligible in certain situations.

3.2.5 Summary of Heat Transfer Coefficient Kloss and Heat Flux Qheat

We make a summary of the main equations to sum up all the effects commented before:

1. Infiltration Effect: Computed when the door is open, in the Kinfil

Kinfil =
Φtot

Tin − Tout

[
W

K

]
2. Air Leakage or Permeability Effect: Computed when the door is closed, is the sum a

gradient of Pressure due to Stack Effect and due to the Wind Pressure, we take it into account
in Kperm air

Kperm = Cp · ρ · V̇perm

[
W

K

]
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3. Transmission Effect: Computed when the door is closed, is the sum a natural convection
inside, thermal conductivity, and natural convection outside, this effect is taken into account in
the term Ktrans

Ktrans = A · U
[
W

K

]
4. Long Wave Radiation Effect: Computed when the door is closed, is the balance between the

radiation of the inside flux, inside door, outside door and outside flux. It has been linearized
and only taken into account the first term ∆T of of this effect. This is taken into account in the
term KTrans

Klong wave ≈ 4σεA
(αin + αout)UT

3
out

αinαout

[
W

K

]
5. Heating Effect: Computed when the inside Temperature is lower than Tref although the door

is closed or open. This is taken into account in the term Q̇heating.

Q̇heating = CheatVol [W ]

6. Solar Effect: Computed when the door is closed and open (with the corresponding coefficients),
This should be taken into account in the term Q̇solar

Q̇door closed
solar = SHFDdoor ·Aef [W ]

Q̇door open
solar = SHFDhole ·Aef [W ]

Finally we have the comprehensive general equations:

−Q̇lossdt+ Q̇heatdt = dEin

T (t) = Teq − [Teq − Tini] e
− Kloss
CpρVol

t

Teq = Tout +
Q̇heat

Kloss

Q̇heat = Q̇heating + Q̇solar

Kloss = Ktrans +Kperm air +Klong wave +Kinfil

We can separate for door closed and open situations:

Q̇door closed
heat = Q̇heating + Q̇door closed

solar

Q̇door open
heat = Q̇heating + Q̇door open

solar

Kdoor closed
loss = Ktrans +Kperm air +Klong wave

Kdoor open
loss = Kinfil
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3.2.6 Time th to reach a Reference Temperature Tref

To integrate the Temperature function and synthesize the model, we have to calculate the time intervals
defining the transient heating process.

The Reference Temperature Tref is the temperature at which the Heating or Cooling system switches
on. The first objective is to calculate the time th to reach it. Let’s assume that our building is at an
initial Temperature Tini, and there is a heat flux loss due to Kloss. So the time passed until temperature
drops to Tref is,

Tref = Teq − [Teq − Tini] e
− Kloss
CpρVol

th (3.2.39)

th =
CpρVol
Kloss

ln

(
Tini − Teq
Tref − Teq

)
[s] (3.2.40)

Where Teq is the Equilibrium Temperature, defined as the temperature at which, being the door open
enough time, we reach a balance between heating gain and losses.

Also let us compute the Temperature Ttc at a general time tc, this will be,

Ttc = Teq − [Teq − Tini] e
− Kloss
CpρVol

tc (3.2.41)

3.2.7 Time tb to reach the Equilibrium Temperature Teq

We will compute the time to empty all the building air volume and reach a Temperature T (tb) = Teq.
It must be noticed that this occurs at tc → ∞, but we can assume that T (tb) ≈ Teq with a 5% error
criteria or 2% error criteria. We can define the system velocity constant τ , as:

τ =
CpρVol
Kloss

(3.2.42)

t5%
b = 3 · τ = 3

CpρVol
Kloss

[s] (3.2.43)

or

t2%
b = 4 · τ = 4

CpρVol
Kloss

[s] (3.2.44)

t5%
b and t2%

b is the time required to be at a Temperature T (t5%
b ) ≈ Teq with an error of 5% and

T (t2%
b ) ≈ Teq with an error of 2%.

3.2.8 Mean Temperature Tm

Finally, the Mean Temperature Tm is the indoor temperature integrated throughout the cycle. Let us
compute it in two cases. The first case is if we start at a Temperature Tini and it reaches Ttc , so Tm
will be:

T tcm =
1

tc

∫ tc

0

T (t)dt = Teq +
CpρVol
Kloss · tc

(Tini − Teq)
[
1− e−

Kloss
CpρVol

tc

]
(3.2.45)
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For the second case, let us particularise this result for tc = tb, then we will have the following result,

T tbm =
1

tb

∫ tb

0

T (t)dt = Teq +
(Tini − Tref )

ln
(
Tini−Teq
Tref−Teq

) (3.2.46)

3.2.9 Energy Loss Computation Eloss

Let us calculate now the Energy Losses of our system in one door cycle. To do so, we should compute
the energy loss of the door, which is

Eloss = Kloss

∫ tc

0

T (t)dt = Kloss · T tcm · tc [J ] (3.2.47)

and if we consider only until tb, we will have,

Eloss = Kloss

∫ tb

0

T (t)dt = Kloss · T tbm · tb [J ] (3.2.48)
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3.3 Thermophysical Door Cycle Problem and Iterative Model Calculation
with Heating

With all the equations developed, we will now synthesize the transient simplified model for the heating
season (winter). In the actual problem, where the door is open and closed and the heating it is not
constantly on, we can separate the process in 5 intervals:

1. We start at an initial Temperature Tini, setpoint of the Heating system, and the door is open,
being the Heating off (Ccooling = 0). It drops until Tref taking a time th. At this stage we only
have infiltration effect.

2. We start at a reference Temperature Tref . At this instant (t = th) the Heating is activated
(CHeating 6= 0). As the door is open, the inside Temperature drops until T (tc− th) = Td taking a
time t = tc − th. The overall door open time is tc. At this stage we only have infiltration effect.

3. We start at a Temperature Td = T (tc − th) (after cycle time tc) where the door was open. At
the start of this interval the door is closed, and the Heating (CHeating 6= 0) is trying to recover
its initial Temperature Tini taking a time tq. At this stage we have transmission, permeability
and long wave radiation effects.

4. Now we start at an initial Temperature Tini with the door closed, and the Heating is off
(CHeating = 0) until we reach the Temperature Tref taking a time th2. At this stage we have
transmission, permeability and long wave radiation effects.

5. Finally the Heating (CHeating 6= 0), with the door closed, starts recovering from the Temperature
Tref until the initial Temperature Tini taking a time tq2. At this stage we have transmission,
permeability and long wave radiation effects.

Figure 10: Schema of the characteristic Temperature Profile (not at scale)
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3.3.1 1st Interval: Door Open, Heating Off

In this interval, the inside temperature will be:

T1(t) = Tout − [Tout − Tini] e
− Kinfil
CpρVol

t
(3.3.1)

Losses in this interval are only related to air infiltration. The coefficient will be:

Kinfil =
Φtot

Tini − Tout
(3.3.2)

For the calculation of Φtot some boundary conditions are previously required. In a door, the reference
height for temperature measurement is z0 = 0, 5H, and floor height is usually zb = 0 m.

The values bi, ci and di are empirical as seen in chapter 3.1.2. As reference values we can take, for the
temperature profile:

b1 = 0, 75 K/m

b2 = 1 K/m

And for the pressure profile:
c1 = c2 = 101325 Pa

d2 = 15 Pa/m

Taking as seen also in 3.1.2:

a1 = Tini −
b1H

2
(3.3.3)

a2 = Tout −
b2H

2
(3.3.4)

d1 = d2 +
0, 1

H3

We can calculate then the flow as developed before:

Φtot = Φ12 + Φ21 (3.3.5)

Φ12 = Cp
√
ρ1(z0)Re

(
T̃1a(z0)Za − T̃1b(z0)Zb

)
δ12

Φ21 = Cp
√
ρ2(z0)Im

(
T̃2a(z0)Za − T̃2b(z0)Zb

)
δ21

T̃ia(z0) = Ti(z0)− biH
[
Ca
5Ct

+
α− 1

2

]
T̃ib(z0) = Ti(z0)− biH

[
Ca
5Ct

+
α

2

]
α =

z0 − zb
H

Za =
2
√

2

3
CdW

C
3/2
a

Ct

Zb =
2
√

2

3
CdW

C
3/2
b

Ct
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δ12 =
7

8
e−0.3073·H12

δ21 =
7

8
e−0.3073·H21

H12 = z0 −
∆P (z0)

gKair

(
1

T2(z0) −
1

T1(z0)

)
H21 = H −H12

Ca = ∆P (zb +H) = ∆P (z0) + gKair

(
1

T2(z0)
− 1

T1(z0)

)
(zb + h− z0)

Cb = ∆P (zb) = ∆P (z0) + gKair

(
1

T2(z0)
− 1

T1(z0)

)
(zb − z0)

Ct = Ca − Cb

Cd =
1√

1, 75 + 0, 7 · e(− W
32.5·H )

Ti(z) = ai + bi · z

Pi(z) = ci + di · z +
1

2
ρ · 0.0029 · v2

wind

ρi =
Kair

Ti(z)

Kair =
101325

Rair

R = 287.05
J

kgK

We also need:

th =
CpρVol
Kinfil

ln

(
Tini − Tout
Tref − Tout

)
(3.3.6)

Tm1 =
1

tc

∫ tc

0

T (t)dt =


Tout +

CpρVol
Kinfil · tc

(Tini − Tout)
[
1− e−

Kinfil
CpρVol

tc

]
if tc < th

Tout +
(Tini − Tref )

ln
(
Tini−Tout
Tref−Tout

) if tc ≥ th
(3.3.7)

Finally, we can compute the heat flux:

Em1 =

{
Kinfil · (Tm1 − Tout) · tc if tc < th

Kinfil · (Tm1 − Tout) · th if tc ≥ th
(3.3.8)

For a slight better approximation, an iteration could be done with the value Tm1 calculated, taking
a1 = Tm1 − b1 · h/2 and recalculate from previous equations and obtain again Φtot, th and Tm1 to
calculate new Kinfil.

Kinfil =
Φtot

Tm1 − Tout
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3.3.2 2nd Interval: Door Open, Heating On

The inside temperature will be:

T2(t) = Tc − [Tc − Tref ] e
−
Kinfil
CpρVol

t
(3.3.9)

Where, as the heating system is on, the equilibrium temperature will be:

Tc = Tout +
CheatingVol +Qsolar

Kinfil
(3.3.10)

The infiltration losses are defined by:

Kinfil =
Φtot

Tref − Tout
(3.3.11)

To calculate Φtot with the same equations as in interval 1 we take:

a1 = Tref −
b1H

2
(3.3.12)

a2 = Tout −
b2H

2
(3.3.13)

d1 = d2 +
0, 1

H3

Then the time to empty all the building air volume and reach equilibrium temperature Tc is:

t2%
b = 4

CpρVol
Kinfil

(3.3.14)

Then the mean temperature in the interval will be:

Tm2 =



if Tc ≤ Tref


Tc +

CpρVol (Tref − Tc)
Kinfil (tc − th)

[
1− e−

Kinfil
CpρV ol

(tc−th)
]

if tc > th and t
2%
b > tc − th

Tc +
CpρVol (Tref − Tc)

Kinfil (t
2%
b )

[
1− e−

Kinfil
CpρV ol

(t2%b )
]

if tc > th and t
2%
b ≤ tc − th

∅ if tc ≤ th

if Tc > Tref


Tc +

(Tref − Tini)

ln
(
Tref−Tc
Tini−Tc

) if tc > tin + th

Tc +
CpρVol (Tref − Tc)
Kinfil (tc − th)

[
1− e−

Kinfil
CpρVol

(tc−th)
]

if tc ≤ tin + th

(3.3.15)
Where:

tin =
CpρVol
Kinfil

ln

(
Tref − Tc
Tini − Tc

)
(3.3.16)

These several cases contemplate the power of the heating in order to be able or not to increase the
inside temperature with the door open.

38



Finally we have the energy flux:

Em2 =



if Tc ≤ Tref


Kinfil · (Tm2 − Tout) · (tc − th) if tc > th and t

2%
b > tc − th

Kinfil · (Tm2 − Tout) · (t2%
b ) + CHeat · Vol · (tc − th − t2%

b ) if tc > th and t
2%
b ≤ tc − th

0 if tc < th

if Tc > Tref


(Em1 +Kinfil · (Tm2 − Tout) · tin)

tc
tin + th

− Em1 if tc > tin + th and tc > th

Kinfil · (Tm2 − Tout) · (tc − th) if tc ≤ tin + th and tc > th

∅ if tc < th
(3.3.17)

For a better approximation, always that we are far from Teq, an iteration can be done recalculating
with Tm2, computing again a1 = Tm2 − b1H/2 and recalculating from Equation (3.4.11) to (3.4.15),
obtaining Φtot, and Tm2 to calculate a new Kinfil:

Kinfil =
Φtot

Tm2 − Tout
(3.3.18)

3.3.3 3rd Interval: Door Closed, Heating On

In this interval, the inside temperature will be:

T3(t) = Tq − [Tq − Td] e−
Kloss
CvV ol ρ

t (3.3.19)

Where:

Td =



if Tc ≤ Tref

Tc − [Tc − Tref ] e
−
Kinfil
CpρVol

(tc−th)
if tc ≥ th

Tout − [Tout − Tini] e
−
Kinfil
CpρVol

tc if tc < th

if Tc > Tref


Tc − [Tc − Tref ] e

−
Kinfil
CpρVol

(tc−th)
if tc ≤ th + tin

Tm1 · th + Tm2 · tin
th + tin

if tc > th + tin

(3.3.20)

Where again:

tin =
CpρVol
Kinfil

ln

(
Tref − Tc
Tini − Tc

)
And also:

Tc = Tout +
CheatingVol
Kinfil

We can assume as an approximation for calculation that the mean temperature is:

Tm3 ≈
Tini + Td

2
(3.3.21)

As the door is closed, we will have losses due to transmission, leakage and radiation:

Kloss = Ktrans +Kperm air +Klong wave (3.3.22)
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Kloss = A · U
(
1 + 0, 734 · σ · ε · T 3

out

)
+ Cpρ

A · LR
3600

(
Pw + Ps
PR

)2/3

(3.3.23)

where,

Pw =
1

2
ρ · v2

wind (3.3.24)

Ps =
ρg(Hb −Hnp)(Tm3 − Tout)

Tout
(3.3.25)

And with Kloss we can calculate:

Tq = Tout +
CHeatingVol
Kloss

(3.3.26)

tq =
CvVol ρ

K
ln

(
Td − Tq
Tini − Tq

)
(3.3.27)

Tm3 = Tq +
(Td − Tini)

ln
(
Td−Tq
Tini−Tq

) (3.3.28)

Finally we calculate the energy flux:

Em3 = Kloss · (Tm3 − Tout) · tq (3.3.29)

For a slight better approximation, we can recalculate a new iteration with Tm3, computing again from
Equation (3.4.23) to (3.4.28) and obtain the new values for Tm3 and tq.

3.3.4 4th Interval: Door Closed, Heating Off

The mean temperature in the interval will be:

T4(t) = Tout − [Tout − Tini] e−
Kloss
CvV ol ρ

t (3.3.30)

We also initially assume that:

Tm4 ≈
Tini + Tref

2
(3.3.31)

As the door is closed we have like in interval 3:

Kloss = Ktrans +Kperm air +Klong wave (3.3.32)

Kloss = A · U
(
1 + 0, 734 · σ · ε · T 3

out

)
+ Cpρ

A · LR
3600

(
Pw + Ps
PR

)2/3

(3.3.33)

where,

Pw =
1

2
ρv2
wind (3.3.34)

Ps =
ρg(Hb −Hnp)(Tm4 − Tout)

Tout
(3.3.35)

Then we have:
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th2 =
CvVol ρ

Kloss
ln

(
Tini − Tout
Tref − Tout

)
Tm4 = Tout +

(Tini − Tref )

ln
(
Tini−Tout
Tref−Tout

) (3.3.36)

Finally we have the value of the energy flux:

Em4 = Kloss · (Tm4 − Tout) · th2 (3.3.37)

Like in previous intervals, a better approximation can be achieved recalculating with Tm4 again from
Equation (3.4.33) to (3.4.36) and obtaining obtain the new values of Tm4 and th2.

3.3.5 5th Interval: Door Closed, Heating On

The inside temperature in the last interval will be:

T5(t) = Tq − [Tq − Tref ] e−
Kloss
CvV ol ρ

t (3.3.38)

where,

Tq = Tout +
CHeatingVol

Kloss
(3.3.39)

In an analogue way like the previous intervals we assume:

Tm5 ≈
Tini + Tref

2
(3.3.40)

The losses will be:

Kloss = A · U
(
1 + 0, 734 · σ · ε · T 3

out

)
+ Cpρ

A · LR
3600

(
Pw + Ps
PR

)2/3

(3.3.41)

where,

Pw =
1

2
ρv2
wind (3.3.42)

Ps =
ρg(Hb −Hnp)(Tm5 − Tout)

Tout
(3.3.43)

Then we calculate:

tq2 =
CvVol ρ

Kloss
ln

(
Tref − Tq
Tini − Tq

)
(3.3.44)

Tm5 = Tq +
(Tref − Tini)

ln
(
Tref−Tq
Tini−Tq

) (3.3.45)

Finally we can calculate the energy flux:

Em5 = Kloss · (Tm5 − Tout) · tq2 (3.3.46)

As an additional iteration for a better approximation, we can recalculate with Tm5 again from Equation
(3.4.41) to (3.4.45) and obtain the new Tm5 and tq2.
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3.3.6 Energy Contribution in time

Once that we have calculated the energy flux, we can compute the net energy loss along a period of
time. We consider one year as a reference.

If we name Nheating the number of heating days per year and Ncycles the number of opening and
closing cycles per year, the total energy along during the whole year would be:

Etotal heating = (Em1 + Em2 + Em3) ·Ncycles

+ (Em4 + Em5) · 1

th2 + tq2
· (Nheating · 24 · 3600− (tc + tq) ·Ncycles)

(3.3.47)

This calculation was made on a 365/24 basis. If we consider that the heating is working a number of
days per week Nweek with a working day time twork in hours, we would have:

Etotal heating = (Em1 + Em2 + Em3) ·Ncycles ·
Nweek

7
· Nheating

365

+ (Em4 + Em5) · 1

th2 + tq2
·
(
Nheating · twork · 3600−Ncycles ·

Nheating
365

· (tc + tq)

)
· Nweek

7
(3.3.48)

For the calculation of the weight of the single effects, the single loss coefficient Ktrans, Kperm, Klongwave

and Kinfil should be applied in the expressions to calculate Emi.
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3.4 Thermophysical Door Cycle Problem and Iterative Model Calculation
with Cooling

Following the same procedure, we can derive the thermophysical door cycle problem that follow the
same equations as those of the presented before (heating season) but for the cooling season (summer).
In this case, the temperature diagram is a mirror image with respect to the horizontal axis of the one
represented in figure 10.

3.4.1 1st Interval: Door Open, Cooling Off

In this interval, the inside temperature will be:

T1(t) = Tout − [Tout − Tini] e
− Kinfil
CpρVol

t
(3.4.1)

Losses in this interval are only related to air infiltration. The coefficient will be:

Kinfil =
Φtot

Tout − Tini
(3.4.2)

For the calculation of Φtot some boundary conditions are previously required. In a door, the reference
height for temperature measurement is z0 = 0, 5H, and floor height is usually zb = 0 m.

The values bi, ci and di are empirical as seen in chapter 3.1.2. As reference values we can take, for the
temperature profile:

b1 = 0, 75 K/m

b2 = 1 K/m

And for the pressure profile:
c1 = c2 = 101325 Pa

d2 = 15 Pa/m

Taking as seen also in 3.1.2:

a1 = Tout −
b1H

2
(3.4.3)

a2 = Tini −
b2H

2
(3.4.4)

d1 = d2 +
0, 1

H3

We can calculate then the flow as developed before:

Φtot = Φ12 + Φ21 (3.4.5)

Φ12 = Cp
√
ρ1(z0)Re

(
T̃1a(z0)Za − T̃1b(z0)Zb

)
δ12

Φ21 = Cp
√
ρ2(z0)Im

(
T̃2a(z0)Za − T̃2b(z0)Zb

)
δ21

T̃ia(z0) = Ti(z0)− biH
[
Ca
5Ct

+
α− 1

2

]
T̃ib(z0) = Ti(z0)− biH

[
Ca
5Ct

+
α

2

]
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α =
z0 − zb
H

Za =
2
√

2

3
CdW

C
3/2
a

Ct

Zb =
2
√

2

3
CdW

C
3/2
b

Ct

δ12 =
7

8
e−0.3073·H12

δ21 =
7

8
e−0.3073·H21

H12 = z0 −
∆P (z0)

gKair

(
1

T2(z0) −
1

T1(z0)

)
H21 = H −H12

Ca = ∆P (zb +H) = ∆P (z0) + gKair

(
1

T2(z0)
− 1

T1(z0)

)
(zb + h− z0)

Cb = ∆P (zb) = ∆P (z0) + gKair

(
1

T2(z0)
− 1

T1(z0)

)
(zb − z0)

Ct = Ca − Cb

Cd =
1√

1, 75 + 0, 7 · e(− W
32.5·H )

Ti(z) = ai + bi · z

Pi(z) = ci + di · z +
1

2
ρ · 0.0029 · v2

wind

ρi =
Kair

Ti(z)

Kair =
101325

Rair

R = 287.05
J

kgK

We also need:

th =
CpρVol
Kinfil

ln

(
Tini − Tout
Tref − Tout

)
(3.4.6)

Tm1 =
1

tc

∫ tc

0

T (t)dt =


Tout +

CpρVol
Kinfil · tc

(Tini − Tout)
[
1− e−

Kinfil
CpρVol

tc

]
if tc < th

Tout +
(Tini − Tref )

ln
(
Tini−Tout
Tref−Tout

) if tc ≥ th
(3.4.7)

Finally, we can compute the heat flux:

Em1 =

{
Kinfil · (Tm1 − Tout) · tc if tc < th

Kinfil · (Tm1 − Tout) · th if tc ≥ th
(3.4.8)
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For a slight better approximation, an iteration could be done with the value Tm1 calculated, taking
a1 = Tm1 − b1 · h/2 and recalculate from previous equations and obtain again Φtot, th and Tm1 to
calculate new Kinfil.

Kinfil =
Φtot

Tout − Tm1

3.4.2 2nd Interval: Door Open, Cooling On

The inside temperature will be:

T2(t) = Tc − [Tc − Tref ] e
−
Kinfil
CpρVol

t
(3.4.9)

Where, as the cooling system is on, the equilibrium temperature will be:

Tc = Tout +
CcoolingVol +Qsolar

Kinfil
(3.4.10)

The infiltration losses are defined by:

Kinfil =
Φtot

Tout − Tref
(3.4.11)

To calculate Φtot with the same equations as in interval 1 we take:

a1 = Tout −
b1H

2
(3.4.12)

a2 = Tref −
b2H

2
(3.4.13)

d1 = d2 +
0, 1

H3

Then the time to empty all the building air volume and reach equilibrium temperature Tc is:

t2%
b = 4

CpρVol
Kinfil

(3.4.14)

Then the mean temperature in the interval will be:

Tm2 =



if Tc ≤ Tref


Tc +

CpρVol (Tref − Tc)
Kinfil (tc − th)

[
1− e−

Kinfil
CpρV ol

(tc−th)
]

if tc > th and t
2%
b > tc − th

Tc +
CpρVol (Tref − Tc)

Kinfil (t
2%
b )

[
1− e−

Kinfil
CpρV ol

(t2%b )
]

if tc > th and t
2%
b ≤ tc − th

∅ if tc ≤ th

if Tc > Tref


Tc +

(Tref − Tini)

ln
(
Tref−Tc
Tini−Tc

) if tc > tin + th

Tc +
CpρVol (Tref − Tc)
Kinfil (tc − th)

[
1− e−

Kinfil
CpρVol

(tc−th)
]

if tc ≤ tin + th

(3.4.15)
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Where:

tin =
CpρVol
Kinfil

ln

(
Tref − Tc
Tini − Tc

)
(3.4.16)

These several cases contemplate the power of the cooling in order to be able or not to increase the
inside temperature with the door open.

Finally we have the energy flux:

Em2 =



if Tc ≤ Tref


Kinfil · (Tm2 − Tout) · (tc − th) if tc > th and t

2%
b > tc − th

Kinfil · (Tm2 − Tout) · (t2%
b ) + CHeat · Vol · (tc − th − t2%

b ) if tc > th and t
2%
b ≤ tc − th

0 if tc < th

if Tc > Tref


(Em1 +Kinfil · (Tm2 − Tout) · tin)

tc
tin + th

− Em1 if tc > tin + th and tc > th

Kinfil · (Tm2 − Tout) · (tc − th) if tc ≤ tin + th and tc > th

∅ if tc < th
(3.4.17)

For a better approximation, always that we are far from Teq, an iteration can be done recalculating
with Tm2, computing again a1 = Tm2 − b1H/2 and recalculating from Equation (3.4.11) to (3.4.15),
obtaining Φtot, and Tm2 to calculate a new Kinfil:

Kinfil =
Φtot

Tout − Tm2
(3.4.18)

3.4.3 3rd Interval: Door Closed, Cooling On

In this interval, the inside temperature will be:

T3(t) = Tq − [Tq − Td] e−
Kloss
CvV ol ρ

t (3.4.19)

Where:

Td =



if Tc ≤ Tref

Tc − [Tc − Tref ] e
−
Kinfil
CpρVol

(tc−th)
if tc ≥ th

Tout − [Tout − Tini] e
−
Kinfil
CpρVol

tc if tc < th

if Tc > Tref


Tc − [Tc − Tref ] e

−
Kinfil
CpρVol

(tc−th)
if tc ≤ th + tin

Tm1 · th + Tm2 · tin
th + tin

if tc > th + tin

(3.4.20)

Where again:

tin =
CpρVol
Kinfil

ln

(
Tref − Tc
Tini − Tc

)
And also:

Tc = Tout +
CcoolingVol
Kinfil
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We can assume as an approximation for calculation that the mean temperature is:

Tm3 ≈
Tini + Td

2
(3.4.21)

As the door is closed, we will have losses due to transmission, leakage and radiation:

Kloss = Ktrans +Kperm air +Klong wave (3.4.22)

Kloss = A · U
(
1 + 0, 734 · σ · ε · T 3

out

)
+ Cpρ

A · LR
3600

(
Pw + Ps
PR

)2/3

(3.4.23)

where,

Pw =
1

2
ρ · v2

wind (3.4.24)

Ps =
ρg(Hb −Hnp)(Tm3 − Tout)

Tout
(3.4.25)

And with Kloss we can calculate:

Tq = Tout +
CcoolingVol
Kloss

(3.4.26)

tq =
CvVol ρ

K
ln

(
Td − Tq
Tini − Tq

)
(3.4.27)

Tm3 = Tq +
(Td − Tini)

ln
(
Td−Tq
Tini−Tq

) (3.4.28)

Finally we calculate the energy flux:

Em3 = Kloss · (Tm3 − Tout) · tq (3.4.29)

For a slight better approximation, we can recalculate a new iteration with Tm3, computing again from
Equation (3.4.23) to (3.4.28) and obtain the new values for Tm3 and tq.

3.4.4 4th Interval: Door Closed, Cooling Off

The mean temperature in the interval will be:

T4(t) = Tout − [Tout − Tini] e−
Kloss
CvV ol ρ

t (3.4.30)

We also initially assume that:

Tm4 ≈
Tini + Tref

2
(3.4.31)

As the door is closed we have like in interval 3:

Kloss = Ktrans +Kperm air +Klong wave (3.4.32)

Kloss = A · U
(
1 + 0, 734 · σ · ε · T 3

out

)
+ Cpρ

A · LR
3600

(
Pw + Ps
PR

)2/3

(3.4.33)
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where,

Pw =
1

2
ρv2
wind (3.4.34)

Ps =
ρg(Hb −Hnp)(Tm4 − Tout)

Tout
(3.4.35)

Then we have:

th2 =
CvVol ρ

Kloss
ln

(
Tini − Tout
Tref − Tout

)

Tm4 = Tout +
(Tini − Tref )

ln
(
Tini−Tout
Tref−Tout

) (3.4.36)

Finally we have the value of the energy flux:

Em4 = Kloss · (Tm4 − Tout) · th2 (3.4.37)

Like in previous intervals, a better approximation can be achieved recalculating with Tm4 again from
Equation (3.4.33) to (3.4.36) and obtaining obtain the new values of Tm4 and th2.

3.4.5 5th Interval: Door Closed, Cooling On

The inside temperature in the last interval will be:

T5(t) = Tq − [Tq − Tref ] e−
Kloss
CvV ol ρ

t (3.4.38)

where,

Tq = Tout +
CCoolingVol
Kloss

(3.4.39)

In an analogue way like the previous intervals we assume:

Tm5 ≈
Tini + Tref

2
(3.4.40)

The losses will be:

Kloss = A · U
(
1 + 0, 734 · σ · ε · T 3

out

)
+ Cpρ

A · LR
3600

(
Pw + Ps
PR

)2/3

(3.4.41)

where,

Pw =
1

2
ρv2
wind (3.4.42)

Ps =
ρg(Hb −Hnp)(Tm5 − Tout)

Tout
(3.4.43)

Then we calculate:

tq2 =
CvVol ρ

Kloss
ln

(
Tref − Tq
Tini − Tq

)
(3.4.44)

Tm5 = Tq +
(Tref − Tini)

ln
(
Tref−Tq
Tini−Tq

) (3.4.45)
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Finally we can calculate the energy flux:

Em5 = Kloss · (Tm5 − Tout) · tq2 (3.4.46)

As an additional iteration for a better approximation, we can recalculate with Tm5 again from Equation
(3.4.41) to (3.4.45) and obtain the new Tm5 and tq2.

3.4.6 Energy Contribution in time

Once that we have calculated the energy flux, we can compute the net energy loss along a period of
time. We consider one year as a reference.

If we name NCooling the number of cooling days per year and Ncycles the number of opening and
closing cycles per year, the total energy along during the whole year would be:

Etotal cooling = (Em1 + Em2 + Em3) ·Ncycles

+ (Em4 + Em5) · 1

th2 + tq2
· (Ncooling · 24 · 3600− (tc + tq) ·Ncycles)

(3.4.47)

This calculation was made on a 365/24 basis. If we consider that the cooling is working a number of
days per week Nweek with a working day time twork in hours, we would have:

Etotal cooling = (Em1 + Em2 + Em3) ·Ncycles ·
Nweek

7
· Ncooling

365

+ (Em4 + Em5) · 1

th2 + tq2
·
(
Ncooling · twork · 3600−Ncycles ·

Ncooling
365

· (tc + tq)

)
· Nweek

7
(3.4.48)

For the calculation of the weight of the single effects, the single loss coefficient Ktrans, Kperm, Klongwave

and Kinfil should be applied in the expressions to calculate Emi.
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4 Calculation example

In this section we will calculate a door example to verify the results of the simplified calculation
framework.

To have a reference for comparison, we will use the example in the technical report of the CEN [19].
Also, we have added the effect of cooling in summer. Which follow the same equations as those of the
presented on the heating and cooling model.

4.1 Reference data

According to the data of the example case in [19] we have the following input data:

4.1.1 Location and climate

Location: Paris
Outside temperature in heating season: Tout = 10 oC
Door direction: West-Southwest
Correction factor according to wind direction: Cw = 34,7
Average wind velocity in heating season: vmet = 5,0 m/s
Net wind velocity: vwind = vmet · Cw/100 = 5, 0 · 34, 7/100 = 1, 735
Heating days per year: Nheating = 243 days
Outside temperature in cooling season: Tout = 28 oC
Average wind velocity in cooling season: vmet = 5,0 m/s
Net wind velocity: vwind = vmet · Cw/100 = 5, 0 · 34, 7/100 = 1, 735
Cooling days per year: Ncooling = 120 days
Solar irradiance in heating season: Ish = 73,6 kWh/(m2 · year)
Peak solar hours per day in heating season: tpsh = 4,53 h/day
Solar irradiance per in cooling season: Isc = 92,1 kWh/(m2 · year)
Peak solar hours per day in cooling season: tpsh = 8.25 h/day

4.1.2 Building and door

Building height: Hb = 8 m
Building volume: V = 1600 m3, 8000 m3, 16000 m3

Heating power: Cheat = 20 W/m3

Cooling power: Ccool = 20 W/m3

Door height x Door width: H x W = 3 m x 3 m, 4 m x 4 m
Window area: Ag = 1 m2

Thermal transmittance: U = 1,5 W/m2K
Air permeability at PR: LR = 12 m3/m2h
Reference pressure for air permeability: PR = 50 Pa
Emissivity: ε = 0,9

4.1.3 Building intended use

Inside setpoint temperature in heating season: Tini = 18 oC
Inside setpoint temperature in cooling season: Tini = 24 oC
Door cycle time: tc = 300 s, 120 s, 30 s
Door cycles per year: n = 1000
Working days per week: Nweek = 5 days
Workday time: twork = 24 hours
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4.2 Results

We show the energy losses due to each effect in kWh and % for the different building sizes, door sizes
and opening times as found in [19], adding also a short cycle case:

tc = 300s
A = 3× 3 A = 4× 4

1600 m3 8000 m3 16000 m3 1600 m3 8000 m3 16000 m3

Heating

Heat Transmission [kWh] 414,69 417,15 417,15 736,92 741,38 741,60
Long Wave Radiation [kWh] 352,71 354,80 354,80 626,79 630,58 630,76
Air Leakage [kWh] 294,18 295,63 295,63 522,79 525,53 525,57
Air Infiltration [kWh] 3121,64 6331,81 6400,18 3179,49 8009,16 8411,47
Total [kWh] 4182,42 7399,21 7467,58 5064,57 9906,01 10309,07

Cooling

Heat Transmission [kWh] 95,40 95,62 95,62 169,56 169,99 169,99
Long Wave Radiation [kWh] 97,62 97,84 97,84 173,51 173,95 173,95
Air Leakage [kWh] 51,16 51,26 51,26 90,94 91,13 91,13
Air Infiltration [kWh] 1020,61 2066,15 2109,19 1043,35 2693,53 2738,87
Total [kWh] 1264,67 2310,82 2353,86 1477,16 3128,50 3173,84

Total

Heat Transmission [kWh] 510,08 512,77 512,77 906,48 911,37 911,58
Long Wave Radiation [kWh] 450,33 452,65 452,65 800,30 804,53 804,71
Air Leakage [kWh] 345,34 346,89 346,89 613,73 616,66 616,70
Air Infiltration [kWh] 4142,24 8397,95 8509,37 4222,84 10702,69 11150,34
Total [kWh] 5447,09 9710,03 9821,45 6541,72 13034,51 13482,91

Table 4: Energy losses in kWH, tc = 300 s

tc = 300s
A = 3× 3 A = 4× 4

1600 m3 8000 m3 16000 m3 1600 m3 8000 m3 16000 m3

Heating

Heat Transmission [%] 9,91 5,64 5,59 14,55 7,48 7,19
Long Wave Radiation [%] 8,43 4,80 4,75 12,38 6,37 6,12
Air Leakage [%] 7,03 4,00 3,96 10,32 5,31 5,10
Air Infiltration [%] 74,64 85,57 85,71 62,78 80,85 81,59
Total [%] 100,00 100,00 100,00 100,00 100,00 100,00

Cooling

Heat Transmission [%] 7,54 4,14 4,06 11,48 5,43 5,36
Long Wave Radiation [%] 7,72 4,23 4,16 11,75 5,56 5,48
Air leakage [%] 4,05 2,22 2,18 6,16 2,91 2,87
Air Infiltration [%] 80,70 89,41 89,61 70,63 86,10 86,30
Total [%] 100,00 100,00 100,00 100,00 100,00 100,00

Total

Heat Transmission [%] 9,36 5,28 5,22 13,86 6,99 6,76
Long Wave Radiation [%] 8,27 4,66 4,61 12,23 6,17 5,97
Air leakage [%] 6,34 3,57 3,53 9,38 4,73 4,57
Air Infiltration [%] 76,05 86,49 86,64 64,55 82,11 82,70
Total [%] 100,00 100,00 100,00 100,00 100,00 100,00
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Table 5: Energy losses in %, tc = 300 s

tc = 120s
A = 3× 3 A = 4× 4

1600 m3 8000 m3 16000 m3 1600 m3 8000 m3 16000 m3

Heating

Heat Transmission [kWh] 418,00 419,55 419,55 741,94 745,83 745,87
Long Wave Radiation [kWh] 355,53 356,85 356,85 631,06 634,36 634,40
Air Leakage [kWh] 296,47 297,34 297,34 526,30 528,61 528,60
Air Infiltration [kWh] 1985,86 2568,33 2568,59 2320,99 3344,86 3415,82
Total [kWh] 2526,04 3055,12 3641,88 3642,14 4218,90 5253,22
5324,36

Cooling

Heat Transmission [kWh] 95,98 96,17 96,17 170,55 170,97 170,97
Long Wave Radiation [kWh] 98,21 98,41 98,41 174,52 174,95 174,95
Air Leakage [kWh] 51,47 51,56 51,56 91,47 91,65 91,65
Air Infiltration [kWh] 625,91 852,07 852,07 670,19 1104,27 1104,28
Total [kWh] 871,46 1098,15 1098,15 1106,52 1541,76 1541,76

Total

Heat Transmission [kWh] 513,97 515,72 515,72 912,49 916,80 916,84
Long Wave Radiation [kWh] 453,74 455,26 455,26 805,58 809,31 809,35
Air Leakage [kWh] 347,94 348,89 348,89 617,77 620,26 620,25
Air Infiltration [kWh] 2611,77 3420,40 3420,66 2991,18 4449,14 4520,09
Total [kWh] 3926,58 4740,04 4740,30 5325,42 6794,98 6866,12

Table 6: Energy losses in kWh, tc = 120 s

tc = 120s
A = 3× 3 A = 4× 4

1600 m3 8000 m3 16000 m3 1600 m3 8000 m3 16000 m3

Heating

Heat Transmission [%] 13,68 11,52 11,52 17,59 14,20 14,01
Long Wave Radiation [%] 11,64 9,80 9,80 14,96 12,08 11,92
Air Leakage [%] 9,70 8,16 8,16 12,47 10,06 9,93
Air Infiltration [%] 65,00 70,52 70,52 55,01 63,67 64,15
Total [%] 100,00 100,00 100,00 100,00 100,00 100,00

Cooling

Heat Transmission [%] 11,01 8,76 8,76 15,41 11,09 11,09
Long Wave Radiation [%] 11,27 8,96 8,96 15,77 11,35 11,35
Air leakage [%] 5,91 4,69 4,69 8,27 5,94 5,94
Air Infiltration [%] 71,82 77,59 77,59 60,57 71,62 71,62
Total [%] 100,00 100,00 100,00 100,00 100,00 100,00

Total

Heat Transmission [%] 13,09 10,88 10,88 17,13 13,49 13,35
Long Wave Radiation [%] 11,56 9,60 9,60 15,13 11,91 11,79
Air leakage [%] 8,86 7,36 7,36 11,60 9,13 9,03
Air Infiltration [%] 66,52 72,16 72,16 56,17 65,48 65,83
Total [%] 100,00 100,00 100,00 100,00 100,00 100,00

Table 7: Energy losses in %, tc = 120 s
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tc = 30s
A = 3× 3 A = 4× 4

1600 m3 8000 m3 16000 m3 1600 m3 8000 m3 16000 m3

Heating

Heat Transmission [kWh] 420,63 420,75 420,75 747,56 748,00 748,01
Long Wave Radiation [kWh] 357,77 357,87 357,87 635,84 636,21 636,22
Air Leakage [kWh] 298,17 298,19 298,19 529,97 530,12 530,11
Air Infiltration [kWh] 624,75 645,67 648,48 802,50 853,46 853,95
Total [kWh] 1700,96 1722,30 1725,11 2715,07 2767,44 2767,96

Cooling

Heat Transmission [kWh] 96,43 96,45 96,44 171,39 171,46 171,46
Long Wave Radiation [kWh] 98,68 98,69 98,69 175,38 175,45 175,45
Air Leakage [kWh] 51,70 51,70 51,70 91,89 91,92 91,92
Air Infiltration [kWh] 207,51 216,48 216,48 262,27 279,66 282,51
Total [kWh] 454,24 463,27 463,27 700,80 718,40 721,25

Total

Heat Transmission [kWh] 517,06 517,20 517,20 918,96 919,46 919,47
Long Wave Radiation [kWh] 456,44 456,56 456,56 811,22 811,66 811,67
Air Leakage [kWh] 349,87 349,89 349,89 621,86 622,04 622,03
Air Infiltration [kWh] 832,25 862,16 864,96 1064,77 1133,12 1136,46
Total [kWh] 2155,20 2185,58 2188,38 3415,86 3485,84 3489,21

Table 8: Energy losses in kWh, tc = 30 s

tc = 30s
A = 3× 3 A = 4× 4

1600 m3 8000 m3 16000 m3 1600 m3 8000 m3 16000 m3

Heating

Heat Transmission [%] 24,73 24,43 24,39 27,53 27,03 27,02
Long Wave Radiation [%] 21,03 20,78 20,74 23,42 22,99 22,98
Air Leakage [%] 17,53 17,31 17,29 19,52 19,16 19,15
Air Infiltration [%] 36,73 37,49 37,59 29,56 30,84 30,85
Total [%] 100,00 100,00 100,00 100,00 100,00 100,00

Cooling

Heat Transmission [%] 21,23 20,82 20,82 24,46 23,87 23,77
Long Wave Radiation [%] 21,72 21,30 21,30 25,03 24,42 24,33
Air leakage [%] 11,38 11,16 11,16 13,11 12,79 12,74
Air Infiltration [%] 45,68 46,73 46,73 37,42 38,93 39,17
Total [%] 100,00 100,00 100,00 100,00 100,00 100,00

Total

Heat Transmission [%] 23,99 23,66 23,63 26,90 26,38 26,35
Long Wave Radiation [%] 21,18 20,89 20,86 23,75 23,28 23,26
Air leakage [%] 16,23 16,01 15,99 18,21 17,84 17,83
Air Infiltration [%] 38,62 39,45 39,53 31,17 32,51 32,57
Total [%] 100,00 100,00 100,00 100,00 100,00 100,00

Table 9: Energy losses in %, tc = 30 s

We verify that the order of magnitude of the different effects is very similar to the precalculation in
chapter 2.6. Infiltration is by far the main source of losses in a door.
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With very long cycle times and big buildings, the relative weight of the infiltration can be near 90%,
but even with fast doors it achieves around 50% of the total losses. In case of increasing larger number
of cycles, obviously the infiltration weight is also increased.

The influence of building size increases with the cycle time. In respect of the door area, there is quite
a linear relation as expected.
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5 Experiments

5.1 Background

There are quite limited experiences in technical literature investigating the global energy performance
of a door inside a building. The most complete recent example with a wide approach is [4]. Most
of this research is based on numerical calculations and only limited testing, but it reveals clearly the
importance of air infiltration and related parameters in the overall energy losses.

Some research work it is been done based on CFD and FFD calculations investigating the air flow
phenomena through building openings like [6] or [7], but few recent experiments are published with
practical measurements on the field focused on door performance.

In older researches as summarised in [1] we do find several experiments specifically on air flow through
large openings to characterise the infiltration phenomena like Baranowski et al. (1989), Tang and
Robberechts (1989), Pelletret et al. (1988), Allard et al. (1987) and Crommelin and Vrins (1988).

Anyway, in these papers we do not find enough experimental base to evaluate the validity of the bulk
density air flow model as described in chapter 3.1. In order to achieve this purpose specifically for the
door field, some specific experiments have been done in the framework of this study.

5.2 Test equipment

The basic test consisted in the measurement of the air flow distribution through a door hole that
separates two environments or spaces with different temperature conditions.

The tests were performed in the Hörrmann KG Brockhagen testing facilities in Steinhagen, Germany.
They are equipped with a dual climate test chamber with the following characteristics:

Figure 11: Test equipment distribution

Hot room:

- Dimensions (Width x Large x Height) = 6 x 4,5 x 4 m
- Maximum temperature = 60 oC
- Heating power = 30 kW
- Air flow = 3000 m3/h

Cold room:

- Dimensions (Width x Large x Height) = 6 x 2,9 x 4 m
- Minimum temperature = -30 oC
- Cooling power = 22 kW
- Air flow = 9000 m3/h

A scaled door of 1x1 meter was used to have a balance
between door size and chamber volumes to avoid fast tem-
perature variations inside the rooms allowing air flow measurements in the flow.

To measure the air flow in the door hole, a measurement equipment was designed and manufactured
specifically for these tests. The main objective was to be able to have a clear idea of the distribution
of the wind speed, temperature and pressure in the door hole area, as well as temperature evolution
in the rooms.

It was composed by three modules with distributed sensors:
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1. Door sensor array

2. Hot room sensor kit

3. Cold room sensor kit

In total, there were 43 sensors, 25 in the door sensor array.

Figure 12: Door sensor array (hot side, door
open)

Small wind and pressure free hardware sensors were
used to have this multi-point measurement reducing
the flow interference at a reasonable cost with enough
precision.

Wind sensor rev. P by Modern Device was used for
wind speed and temperature measurement. Speed
measurement is based on hot wire technology, having
analogue output for both wind speed and temperature
signals. A study of its performance compared to more
complex devices can be found in [6], where there are
also reference values used to support calibration.

Static pressure measurement was done with BMP180
type sensors. They have a i2C digital output and they
also include temperature and relative humidity sen-
sors.

Their main characteristics are the following:

Figure 13: Hot and cold rooms sensor ar-
rangements

- Wind speed range: 0 - 67 m/s. Precision = 0,001 m/s
- Temperature range: -10 to 85 oC. Precision = 0,1 oC
- Pressure range: 0,3 to 1.3 MPa. Precision = 1 Pa

An additional laser sensor was included to measure the door
position.

All sensors were integrated with a controller based in Ar-
duino Mega. Both analogue and digital multiplexors were
used to dispose of the large number of I/O required. A
software was designed in Arduino platform to record and
store the measurement data.
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5.3 Test procedure and conditions

After proper sensor calibration, the test procedure consisted in the following basic steps:

1. Chamber temperature regulation and stabilization.

2. Data recording start.

3. Door opening and closing cycling.

Several tests were pèrformed with different combinations of cold/hot temperatures and door cycle time,
considering long, medium and short cycle times. Some tests were also performed using a small fan was
to simulate the presence of wind pressure.

The detailed parameters were the following:

Test group Tout [oC] Tin [oC] topen [oC] tclosed [oC] Wind Fan

A −5 30 60 180 NO
B −5 30 30 60 NO
C −10 30 300 600 NO
D −10 30 300 600 Y ES
E −10 30 180 120 NO
F −10 30 60 120 NO
G −10 30 60 120 Y ES
H 0 20 30 60 NO

Table 10: Test typologies

The following data were collected:

- Time [h:min:s]
- Air velocity [m/s] (analogue)
- Static pressure [Pa] (digital)
- Temperature [oC] (analogue)
- Temperature [oC] (digital)
- Relative humidity [%] (digital)
- Door position [m] (digital)

Analogue measures are taken in terms of electrical tension variation in Volts and converted into m/s.

5.4 Test results

All tests confirmed an air flow velocity distribution in the door hole similar profile to what is described
by the simplified model. As an example, we show an instantaneous interpolated result with open door
obtained in a test type A.
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Figure 14: Air velocity distribution, test type A

Figure 15: Air velocity distribution, test type A

In every case without wind pressure, the reverse flow was verified. The position of the neutral line was
always positioned around 2/3 at total door height. Some verifications made with dry smoke confirmed
this fact.

The experimental distribution in the transversal axe is not fully uniform, so an average is made for
the simplified model synthesis.

In the following figures we show the transient performance of temperature and performance for three
cases:

- Test type C: Long opening time (300 seconds)
- Test type A: Medium opening time (60 seconds)
- Test type B: Short opening time (30 seconds)

We show all sensor temperature and velocity curves and mean values across the door sensor matrix
and both rooms.
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Figure 16: Temperature diagram, test type C

Figure 17: Velocity diagram, test type C

Figure 18: Temperature diagram, test type B
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Figure 19: Velocity diagram, test type B

Figure 20: Temperature diagram, test type A

Figure 21: Velocity diagram, test type A
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Regarding the main objective of the study, it is confirmed that the air flow distribution is similar in a
qualitative way to what is described for the bulk density flow, with opposite flows divided by a neutral
line.

In the diagrams is clearly visible the air flow in terms of velocity increase when the door is open in
every cycle.

Regarding the overall performance of the system, the results also show a qualitative temperature
performance in the rooms as described in modelling.

In our case, as the cold room is smallest, with a lower thermal inertia, we see clearly the temperature
decrease in the room, having much lower variation in the hot room.

In the next chapter we will analysis the adjustment of the infiltration model with the experimental
data.

5.5 Model experimental adjustment

The objective of the test was the characterization of the bulk density flow in order to validate the
infiltration theoretical model as described.

In the following figure we show as an example both theoretical and experimental velocity profiles
through the door height for one instant of a significant test and the theoretical velocity equation as in
the annex 7.1.4.

Figure 22: Experimental velocity profile

As it can be seen in the figure, the boundary layer effect is not explicitly included in the theoretical
velocity profile, but the correction seen in section 3.1.3 is added in order to have an equivalent flux.

The δ(H) correction function was adjusted as shown in expression (3.1.29) with the tests results for
door height = 1 m.
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We also computed the experimental and the theoretical heat flux as a function of the parameters
defining the linear temperature and pressure gradients through the door height b1, b2, d1, d2 (see section
3.1.2) in order to adjust by best fitting these parameters.

With the sensor lectures in terms of temperature and pressure in the rooms (see example in figures 22
and 23), the gradient adjustment was approximated having the best fit between the theoretical and
experimental results. The position of sensors at a certain distance of the door hole inside the room
required a further approximation.

In practice, the values for the parameters that have been found for the temperature profile are the
following :

b1 = 0, 75 K/m

b2 = 1 K/m

And for the pressure profile:

c1 = c2 = 101325 Pa

d1 = 15, 1 Pa/m

d2 = 15, 0 Pa/m

We see that ci can be assumed as the atmospheric pressure and that the values of di have an small
variation. To extend the range of validity to larger doors, a expression of d1(d2) was synthesised in
(3.1.24).

In the next figure, we show the experimental heat flux and the theoretical heat flux with the adjusted
parameters values as described before:

Figure 23: Experimental Infiltration Heat Flux
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The assumption of these values fits well in the temperature and pressure range considered in the test
conducted, but to confirm the range of validity it would be advisable to extend the range of testing
also increasing the number of sensing points inside the rooms next to the door hole.

Figure 24: Temperature and Pressure Cold Room, test type A

Figure 25: Temperature and Pressure Hot Room, test type A
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6 Conclusions

The absence of available analytic calculation frameworks of energy losses through doors have usually
taken in the past to underestimations, misunderstandings and improper evaluation of the variables
and parameters involved in the phenomena.

We consider that the simplified calculation model developed is an adequate tool to calculate in a simple
way the energy losses of building through a door allowing easy programming and integration in digital
platforms. The main objective is to help the door industry to design and promote tools to support the
energy efficiency and sustainability in architecture and building management. In this sense, the scope
of this development is not the detailed simulation of complex real situations in real buildings, as this
can only be approximated with numerical calculations and tools.

The importance of air infiltration or ventilation with the door open is clearly shown, helping to evaluate
and compare properly the main factors involved in energy losses and changing the usual perspective
about the main parameters to be specified for right product prescription for an intended use.

The most complex effect involved, which is the buoyancy or bulk density flow, it has been expressed
in a consistent way and integrated in the model. The tests conducted confirm the overall performance
predicted by this buoyancy model, but some assumptions have been made to adjust it properly. In
this sense, further research would be required to confirm the range of validity of these assumptions in
order to limit the expected variation of the results vs real situations.

The synthesis of the long wave radiation is also developed to allow the integration in the model of
an effect not usually considered in building energy calculations but certainly present in the reality as
confirmed by technical literature.

Although there are experimental approaches validating the single losses effects equations, an additional
validation of the global energy losses model would require an specific test program with a detailed
knowledge of all parameters involved in the test environment. Some technical challenges are associated
to this test design for right parametrization and specification, sensoring and heating/cooling systems
measurement.

Having in mind these research lines for the next future, we consider that the model is an important
step ahead in the field and that the main objectives of the study are fully achieved.
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7 Annex

7.1 Bulk density flow velocity profile calculation

As an alternative and complementary approach to the flow calculation in chapter 3.1, in the follow-
ing we describe the equations of the air velocity profile explaining the phenomena with successive
approximations.

We show how the Bernoulli equation is derived from the Navier-Stokes equation and then how empirical
coefficients like the discharge coefficient and non-dimensional numbers like the Froude number, link
real world observations to the idealised model.

7.1.1 The Equations of Motion, and Various Approximations

The dynamics of general fluid dynamics is based on the conservation of mass principle (expressed in
the continuity equation) and the conservation of momentum principle (expressed in the Navier-Stokes
equation). The derivation of these equations can be found in textbooks on fluid dynamics, but the
following paragraphs are provided to show the origin of various assumptions leading to the Bernoulli
theorem and serve as references for the literature review and discussions in later chapters.

The only external force that will be considered is that of gravity, which exercises a body force ρg
per unit volume on each element of fluid (where ρ is the local density and g is the acceleration due
to gravity). ρ may vary due to differences in temperature or to concentration but the fluid will be
regarded as in-compressible. The compressibility of gases becomes only significant, for example, in
deep layers as in atmospheric physics or at high velocities as in jets.

When ρ varies with height, the pressure variation in the fluid is given by the hydro-static equation

P = P0 − g
∫ z

0

ρdz′ (7.1.1)

This shows that the fluid is in equilibrium only when the density, as well as the pressure, is constant
in every horizontal plane.

The continuity equation applied to a given volume expresses the fact that the difference between the
inflowing mass and the outflowing mass equals the time rate of change of the mass in the volume. For
incompressible flows the continuity equation in vector notation is:

∇ · ~u = 0 (7.1.2)

Three forces can be distinguished when considering the acceleration dv/dt of a fluid element:

1. Gravity force field F = −ρg

2. Gradient in the pressure field P

3. Friction forces F (µ) related to the viscosity µ

Applying Newton’s second law of motion, the Navier-Stokes differential equation for viscous flow can
be obtained:

ρ
D~u

Dt
= −∇P + ρ~g + F (µ) (7.1.3)
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The acceleration vector Du/Dt, concerning an observer moving at the velocity of the liquid (Euler
coordinates), can be decomposed as follows:

D~u

Dt
=
∂~u

∂t
+ (~u · ∇) · ~u =

∂~u

∂t
+

1

2
∇~u2 + (∇× ~u)× ~u (7.1.4)

where for steady-state situations the partial derivative with respect to time is zero. This steady-state
description can be used as a good approximation over time intervals where the change of the velocity
field is negligibly small.

The modelling of dissipating friction forces in the last term F (µ) is just what makes fluid dynamics
a difficult subject (the interested reader is referred to the textbooks). For perfect fluids (non-viscous
flows), the last term in Equation 7.1.3 is neglected the Euler equations of motion are obtained.

It can be shown that only differences of density ρ′ from some standard value ρ0 are relevant in deter-
mining the effect of gravity. The Euler equations can be written in terms of the deviations P ′ and ρ′

(one sets P = P0 + P ′ and ρ = ρ0 + ρ′) from a reference state of hydrostatic equilibrium:

ρ
D~u

Dt
= −∇P ′ + ρ′~g (7.1.5)

where,

∇P0 = ρ0g

After division of this equation by the reference density ρ0,(
1 +

ρ′

ρ

)
D~u

Dt
= −1

ρ
∇P ′ + ρ′

ρ
~g ≈ D~u

Dt
(7.1.6)

It is seen that the density ratio ρ′/ρ appears twice, in the first (inertia) term and in the buoyancy
term. When ρ′/ρ0 is small, it produces only a small correction to the inertia compared to a fluid of
density ρ0, but it is of primary importance in the buoyancy term.

The Boussinesq approximation (Equation 7.1.6) consists essentially of neglecting variations in so far
as they affect inertia, but retaining them in the buoyancy terms, where they occur in the combination
g′ = gρ′/ρ0. Equations 7.1.3 and 7.1.4 combine for non-viscous flow into the Euler equations:

ρ

(
∂~u

∂t
+

1

2
∇~u2 + (∇× ~u)× ~u

)
= −∇P + ρ~g (7.1.7)

For a steady flow, Equation 7.1.7 can be integrated along a streamline and for any two points on this
trajectory the equation can be written as:

P1 +
1

2
ρ ~u1

2 + ρgz1 = P2 +
1

2
ρ ~u2

2 + ρgz2 = Cte (7.1.8)

This is the Bernoulli theorem for inviscid rotational flow expressing the total conservation of mechanical
energy along a trajectory with three terms representing pressure energy, potential energy and kinetic
energy. The constant is in principle varying from streamline to streamline.

Irrotational flow: When integrating Equation 7.1.3 with the additional requirement of irrotational
flow,

∇× ~u = 0 (7.1.9)
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The flow is a potential flow, and the Bernoulli equation is obtained without being restricted to a
streamline, the constant being the same for all the streamlines in the flow.

When viscous forces can not be neglected as for the case of flow through a pipe or duct, the loss
in mechanical energy caused by fluid internal friction results in a loss of pressure, and the Bernoulli
equation can then be generalised by adding a pressure drop term ∆Pf to Equation 7.1.8:

P2 − P1 +
1

2
ρ
(
u2

2 − u1
2
)

+ ρg (z2 − z1) + ∆Pf = 0 (7.1.10)

7.1.2 Application of the Bernoulli Equation

The classical approach of the so-called gravitational flow assumes air flows through large openings to
be driven by density fields on both sides of the opening. Each room is considered as a semi-infinite
reservoir, all walls are assumed to be in thermal equilibrium with the air enclosed in each cavity, for
example, no boundary layer flows, and each streamline is assumed to be horizontal.

The usual way to solve this general problem is to apply Bernoulli equation in the plane and on both
sides of the opening, which is limited to non-viscous, in-compressible flow and valid for a stationary
flow regime.

Assuming hydrostatic pressures (Equation 7.1.1) on both sides (labels 2 and 1) of the opening, then
the velocity in the opening u(z) is obtained from Equation 7.1.8. First assuming z2 = z1, (for example,
a horizontal streamline), the pressure difference P2 − P1 is known by taking two points far from the
opening where the velocities are about equal. Then using u2 >> u2

2 − u2
1 , the velocity in the opening

is:

u(z) =

√
2

ρm

(
(P20

− P10
)− g

∫ z

0

ρ2(z)− ρ1(z)dz′
)

(7.1.11)

and if ρ1(z) = ρ1 and ρ2(z) = ρ2, we get

u(z) =

√
2

ρm
((P20

− P10
)− gz (ρ2 − ρ1)) (7.1.12)

where ρm = ρ1+ρ2
2 is the density of the flowing medium. This velocity is the maximum theoretical

velocity in a non-viscous fluid. This reasoning can be generalised for ideal fluids (to curved streamlines
in the flow through a ”window” as in Figure 2.2), by considering the horizontal velocity component
rather then the velocity along a streamline.

7.1.3 Linear Temperature Gradients

In the preceding problem the air density in both zones is presumed to be uniform. Uniform air density
is a good approximation when the vertical temperature variation over the opening height in each zone
is much smaller than the horizontal temperature difference. In fact, because of thermal stratification,
or gradients of concentration of any species (humidity, pollutants), this assumption is restrictive and
does not allow for the general behaviour of a large vertical opening.

A density ρ depending only on temperature can be written in terms of reference temperature T0.
Pressure is assumed constant so P (z) = P

ρ =
P

T Rair
(7.1.13)
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ρ0 =
P0

T0Rair
(7.1.14)

where Rair = 287.05 J
kgK and is the air gas constant.

So if we assume a linear temperature variation T = T0(a+ b z) [K] then,

ρ(z) =
ρ0

(a+ b z)
(7.1.15)

So finally if we assume a linear temperature variation, the Equation 7.1.11, turns to be:

u(z) =

√
2

ρm

[
(P20

− P10
)− g ρ02

b2
ln

(
1 +

b2
a2
z

)
+ g

ρ01

b1
ln

(
1 +

b1
a1
z

)]
(7.1.16)

Where:

ρm =
ρ1 + ρ2

2

ρ1 =
ρ01

(a1 + b1 z)

ρ2 =
ρ02

(a2 + b2 z)

ρ01 =
P01

T01 Rair

ρ02 =
P02

T02
Rair

Rair = 287.05
J

kgK

7.1.4 Linear Temperature Gradients and Linear Pressure Gradients

In the preceding problem the Temperature in both zones was presumed to be with a linear gradient, and
the Pressure was also assumed in both zones constant. But because the linear gradient Temperature
many times exist a Pressure gradient also. So let us assume that our Pressure profile is also linearly
dependent, P = P0(c+ d z) [Pa].

So density ρ depending on temperature and pressure can be written in terms of reference temperature
T0 and P0.

ρ(z) = ρ0
c+ d z

a+ b z
(7.1.17)

So finally if we assume a linear temperature and pressure variation, the Equation 7.1.11, turns to be:

u(z) =

√
2

ρm

[
(P2 − P1)− gρ02

(
C2 ln

(
1 +

b2
a2
z

)
+ C4z

)
+ gρ01

(
C1 ln

(
1 +

b1
a1
z

)
+ gC3z

)]
(7.1.18)

where,
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P1 = P01
(c1 + d1 z)

P2 = P02
(c2 + d2 z)

C2 =
(b2c2 − a2d2)

b22

C4 =
d2

b2

C1 =
(b1c1 − a1d1)

b21

C4 =
d1

b1

ρm =
ρ1 + ρ2

2

ρ1 = ρ01

c1 + d1 z

(a1 + b1 z)

ρ2 = ρ02

c2 + d2 z

(a2 + b2 z)

ρ01 =
P01

T01
Rair

ρ02 =
P02

T02
Rair

Rair = 287.05
J

kgK
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